package com.iailab.module.model.mdk.sample; import com.iailab.module.data.api.point.DataPointApi; import com.iailab.module.data.api.point.dto.ApiPointDTO; import com.iailab.module.data.api.point.dto.ApiPointValueDTO; import com.iailab.module.data.api.point.dto.ApiPointValueQueryDTO; import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity; import com.iailab.module.model.mcs.pre.service.MmItemOutputService; import com.iailab.module.model.mcs.pre.service.MmItemResultService; import com.iailab.module.model.mcs.pre.service.MmItemTypeService; import com.iailab.module.model.mdk.common.enums.ModelParamType; import com.iailab.module.model.mdk.sample.dto.ColumnItem; import com.iailab.module.model.mdk.sample.dto.ColumnItemPort; import com.iailab.module.model.mdk.sample.dto.SampleData; import com.iailab.module.model.mdk.sample.dto.SampleInfo; import com.iailab.module.model.mdk.vo.DataValueVO; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import java.math.BigDecimal; import java.util.*; import java.util.stream.Collectors; /** * 预测样本数据构造 */ @Component public class PredictSampleDataConstructor extends SampleDataConstructor { private Logger logger = LoggerFactory.getLogger(getClass()); @Autowired private DataPointApi dataPointApi; @Autowired private MmItemResultService mmItemResultService; @Autowired private MmItemTypeService mmItemTypeService; @Autowired private MmItemOutputService mmItemOutputService; /** * alter by zfc 2020.11.24 修改数据样本构造方案:sampleInfo中数据已按爪子进行分类,但爪内数据为无序的, * 对爪内数据样本拼接:先基于modelParamOrder对项进行排序(重写comparator匿名函数),再逐项拼接 * * @param sampleInfo * @return */ @Override public List prepareSampleData(SampleInfo sampleInfo) { List sampleDataList = new ArrayList<>(); //对每个爪分别进行计算 for (ColumnItemPort entry : sampleInfo.getColumnInfo()) { //先依据爪内数据项的modelParamOrder进行排序——重写comparator匿名函数 Collections.sort(entry.getColumnItemList(), new Comparator() { @Override public int compare(ColumnItem o1, ColumnItem o2) { return o1.getModelParamOrder() - o2.getModelParamOrder(); } }); //默认都是double类型的数据,且按列向量进行拼接,默认初始值为0.0 double[][] matrix = new double[entry.getDataLength()][entry.getColumnItemList().size()]; for (int i = 0; i < entry.getColumnItemList().size(); i++) { for (int j = 0; j < entry.getDataLength(); j++) { matrix[j][i] = -2.0; } } //对每一项依次进行数据查询,然后将查询出的值赋给matrix对应的位置 for (int i = 0; i < entry.getColumnItemList().size(); i++) { try { List dataEntityList = getData(entry.getColumnItemList().get(i)); //补全数据 ColumnItem columnItem = entry.getColumnItemList().get(i); dataEntityList = super.completionData(matrix.length, dataEntityList, columnItem.startTime, columnItem.endTime, columnItem.paramId, columnItem.getParamType()); /** 如果数据取不满,把缺失的数据点放在后面 */ if (dataEntityList != null && dataEntityList.size() != 0) { logger.info("设置matrix, i = " + i + ", size = " + dataEntityList.size()); for (int k = 0; k < dataEntityList.size(); k++) { matrix[k][i] = dataEntityList.get(k).getDataValue(); } } } catch (Exception e) { e.printStackTrace(); } } SampleData sampleData = new SampleData(); sampleData.setMatrix(matrix); sampleDataList.add(sampleData); } return sampleDataList; } /** * getData * * @param columnItem * @return * @throws Exception */ private List getData(ColumnItem columnItem) throws Exception { List dataList = new ArrayList<>(); String paramType = columnItem.getParamType(); switch (ModelParamType.getEumByCode(paramType)) { case DATAPOINT: ApiPointDTO point = dataPointApi.getInfoById(columnItem.getParamId()); ApiPointValueQueryDTO queryDto = new ApiPointValueQueryDTO(); queryDto.setPointNo(point.getPointNo()); queryDto.setStart(columnItem.getStartTime()); queryDto.setEnd(columnItem.getEndTime()); List pointValueList = dataPointApi.queryPointHistoryValue(queryDto); dataList = pointValueList.stream().map(t -> { DataValueVO vo = new DataValueVO(); vo.setDataTime(t.getT()); vo.setDataValue(t.getV()); return vo; }).collect(Collectors.toList()); break; case PREDICTITEM: MmItemOutputEntity outPut = mmItemOutputService.getOutPutById(columnItem.getId()); dataList = mmItemResultService.getPredictValue(outPut.getId(), columnItem.getStartTime(), columnItem.getEndTime()); if (dataList == null) { throw new Exception("没有预测值"); } break; default: break; } return dataList; } }