package utils; import java.util.HashMap; /** * @Auther: Forrest * @Date: 2020/6/8 14:05 * @Description: */ public class AlgsUtils { private HashMap model = new HashMap(); public HashMap createPredictHashmap(HashMap models) { if ((models.containsKey("iail/mdk/model"))) { if (((String) ((HashMap) models.get("iail/mdk/model")).get("param1")).isEmpty()) { String aaa = "error"; model.put("param1", aaa); } else { String model_train = (String) ((HashMap) models.get("iail/mdk/model")).get("param1"); model.put("param1", model_train); } } else { model = models; } return model; } public HashMap createPredictHashmapplus(HashMap models) { if (models != null && models.containsKey("models")) { if (((String) ((HashMap) models.get("models")).get("paramFile")).isEmpty()) { String aaa = "error"; model.put("param1", aaa); } else { String model_train = (String) ((HashMap) models.get("models")).get("paramFile"); model.put("paramFile", model_train); if (((HashMap) models.get("models")).containsKey("dim")) { Object dim = ((HashMap) models.get("models")).get("dim"); model.put("dim", dim); } } } else { model = models; } return model; } private HashMap eval_pre = new HashMap(); /** * 对返回码进行转换 * * @param models * @return */ public int reverseResultCode(HashMap models) { if ((models.containsKey("result_code"))) { return Integer.parseInt((String) models.get("result_code")); } return -2; } /** * 对评价指标进行转换 * * @param models * @return */ public HashMap reverseEval(HashMap models) { if ((models.containsKey("eval"))) { if (((HashMap) models.get("eval")).containsKey("MAE")) { double MAE = Double.parseDouble((String) ((HashMap) models.get("eval")).get("MAE")); eval_pre.put("MAE", MAE); } if (((HashMap) models.get("eval")).containsKey("MAPE")) { double MAPE = Double.parseDouble((String) ((HashMap) models.get("eval")).get("MAPE")); eval_pre.put("MAPE", MAPE); } if (((HashMap) models.get("eval")).containsKey("RMSE")) { double MAE = Double.parseDouble((String) ((HashMap) models.get("eval")).get("RMSE")); eval_pre.put("RMSE", MAE); } } return eval_pre; } /** * 对models里面的参数进行转换 */ private HashMap train_result_models = new HashMap(); public HashMap reverseModels(HashMap train_result) { if (train_result.containsKey("models")) { train_result_models = (HashMap) train_result.get("models"); if (((HashMap) train_result.get("models")).containsKey("dim")) { double dim = Double.parseDouble((String) ((HashMap) train_result.get("models")).get("dim")); train_result_models.put("dim", dim); } train_result.put("models", train_result_models); } return train_result; } /** * 获取二维数组行列数 * * @param arr * @return */ public int[] getColAndRow(double[][] arr) { int row = arr.length; int col = arr[0].length; int[] result = new int[2]; result[0] = row; result[1] = col; return result; } /** * 两个二维数组进行合并 * * @param data * @param refs * @return */ public double[][] getMathergeArr(double[][] data, double[][] refs) { int[] dataRowAndCol = getColAndRow(data); int rowData = dataRowAndCol[0]; int colData = dataRowAndCol[1]; int[] refsRowAndCol = getColAndRow(refs); int rowrefs = refsRowAndCol[0]; int colrefs = refsRowAndCol[1]; double[][] newData = new double[rowData + rowrefs][colData]; for (int i = 0; i < rowData; i++) { for (int j = 0; j < colData; j++) { newData[i][j] = data[i][j]; } } for (int i = 0; i < rowrefs; i++) { for (int j = 0; j < colrefs; j++) { newData[i + rowData][j] = refs[i][j]; } } return newData; } /** * 对训练方法进行处理,实现评价指标的转换 */ public HashMap trainUtil(HashMap train_result, HashMap eval, String time) { if (train_result.containsKey("eval")) { eval = (HashMap) train_result.get("eval"); eval.put("time", time); train_result.put("eval", eval); } train_result.put("result_code", reverseResultCode(train_result)); return train_result; } /** * 对预测方法进行处理 */ // public HashMap predictUtil(){ // // } }