From f93760ef25c2a15259b567c87db1f4900b0a42c2 Mon Sep 17 00:00:00 2001
From: 潘志宝 <979469083@qq.com>
Date: 星期二, 04 三月 2025 10:07:51 +0800
Subject: [PATCH] 打印异常

---
 iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java |  143 ++++++++++++++++++++++++++++++++++++++++-------
 1 files changed, 120 insertions(+), 23 deletions(-)

diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
index a15f603..7e0ac4b 100644
--- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
+++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
@@ -1,10 +1,12 @@
 package com.iailab.module.model.mdk.predict.impl;
 
+import com.alibaba.fastjson.JSON;
 import com.alibaba.fastjson.JSONArray;
-import com.alibaba.fastjson.JSONObject;
 import com.iail.model.IAILModel;
-import com.iailab.module.model.common.enums.CommonConstant;
+import com.iailab.module.model.mdk.vo.StAdjustDeviationDTO;
+import com.iailab.module.model.enums.CommonConstant;
 import com.iailab.module.model.common.enums.OutResultType;
+import com.iailab.module.model.common.exception.ModelResultErrorException;
 import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity;
 import com.iailab.module.model.mcs.pre.entity.MmModelArithSettingsEntity;
 import com.iailab.module.model.mcs.pre.entity.MmPredictModelEntity;
@@ -54,14 +56,14 @@
      * @throws ModelInvokeException
      */
     @Override
-    public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel) throws ModelInvokeException {
+    public PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel, String itemName, String itemNo) throws ModelInvokeException {
         PredictResultVO result = new PredictResultVO();
         if (predictModel == null) {
             throw new ModelInvokeException("modelEntity is null");
         }
         String modelId = predictModel.getId();
         try {
-            List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime);
+            List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime, itemName, new HashMap<>());
             String modelPath = predictModel.getModelpath();
             if (modelPath == null) {
                 log.info("模型路径不存在,modelId=" + modelId);
@@ -71,7 +73,7 @@
             HashMap<String, Object> settings = getPredictSettingsByModelId(modelId);
             // 校验setting必须有pyFile,否则可能导致程序崩溃
             if (!settings.containsKey(MdkConstant.PY_FILE_KEY)) {
-                throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY +  "】,请重新上传模型!");
+                throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY + "】,请重新上传模型!");
             }
 
             if (settings == null) {
@@ -86,30 +88,22 @@
             param2Values[portLength] = newModelBean.getDataMap().get("models");
             param2Values[portLength + 1] = settings;
 
-            log.info("####################### 预测模型 "+ "【itemId:" + predictModel.getItemid() + ",modelName" + predictModel.getMethodname() + "】 ##########################");
-//            JSONObject jsonObjNewModelBean = new JSONObject();
-//            jsonObjNewModelBean.put("newModelBean", newModelBean);
-//            log.info(String.valueOf(jsonObjNewModelBean));
-//            JSONObject jsonObjParam2Values = new JSONObject();
-//            jsonObjParam2Values.put("param2Values", param2Values);
-//            log.info(String.valueOf(jsonObjParam2Values));
+            log.info("####################### 预测模型 " + "【itemId:" + predictModel.getItemid() + ",itemName:" + itemName + ",itemNo:" + itemNo + "】 ##########################");
+            log.info("参数: " + JSON.toJSONString(param2Values));
 
             //IAILMDK.run
             HashMap<String, Object> modelResult = DllUtils.run(newModelBean, param2Values, predictModel.getMpkprojectid());
+            //打印结果
+            log.info("预测模型计算完成:modelId=" + modelId + ",modelName=" + predictModel.getMethodname() + ",modelResult=" + JSON.toJSONString(modelResult));
+            //判断模型结果
             if (!modelResult.containsKey(CommonConstant.MDK_STATUS_CODE) || !modelResult.containsKey(CommonConstant.MDK_RESULT) ||
                     !modelResult.get(CommonConstant.MDK_STATUS_CODE).toString().equals(CommonConstant.MDK_STATUS_100)) {
-                throw new RuntimeException("模型结果异常:" + modelResult);
+                throw new ModelResultErrorException("模型结果异常:" + modelResult);
             }
             modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT);
-            //打印结果
-            log.info("预测模型计算完成:modelId=" + modelId + ",modelName" + predictModel.getMethodname());
-            JSONObject jsonObjResult = new JSONObject();
-            jsonObjResult.put("result", modelResult);
-            log.info(String.valueOf(jsonObjResult));
 
             List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid());
             Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>();
-            Map<MmItemOutputEntity, Double> predictDoubleValues = new HashMap<>();
             for (MmItemOutputEntity output : itemOutputList) {
                 if (!modelResult.containsKey(output.getResultstr())) {
                     continue;
@@ -130,19 +124,122 @@
                         break;
                     case D:
                         Double temp3 = (Double) modelResult.get(output.getResultstr());
-                        predictDoubleValues.put(output, temp3);
+                        predictMatrixs.put(output, new double[]{temp3});
                         break;
                     default:
                         break;
                 }
             }
             result.setPredictMatrixs(predictMatrixs);
-            result.setPredictDoubleValues(predictDoubleValues);
             result.setModelResult(modelResult);
             result.setPredictTime(predictTime);
+        } catch (ModelResultErrorException ex) {
+//            ex.printStackTrace();
+            log.error("模型结果异常", ex);
+            throw ex;
         } catch (Exception ex) {
-            log.error("调用发生异常,异常信息为:{}", ex);
-            ex.printStackTrace();
+//            log.error("调用发生异常,异常信息为:{0}", ex.getMessage());
+//            ex.printStackTrace();
+            log.error("模型运行异常", ex);
+            throw new ModelInvokeException(ex.getMessage());
+        }
+        return result;
+    }
+
+    /**
+     * 预测,模拟调整
+     *
+     * @param predictTime
+     * @param predictModel
+     * @param itemName
+     * @param itemNo
+     * @param deviationList
+     * @return
+     * @throws ModelInvokeException
+     */
+    @Override
+    public PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel, String itemName, String itemNo, List<StAdjustDeviationDTO> deviationList) throws ModelInvokeException {
+        PredictResultVO result = new PredictResultVO();
+        if (predictModel == null) {
+            throw new ModelInvokeException("modelEntity is null");
+        }
+        String modelId = predictModel.getId();
+        try {
+            List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime, itemName, new HashMap<>(), deviationList);
+            String modelPath = predictModel.getModelpath();
+            if (modelPath == null) {
+                log.info("模型路径不存在,modelId=" + modelId);
+                return null;
+            }
+            IAILModel newModelBean = composeNewModelBean(predictModel);
+            HashMap<String, Object> settings = getPredictSettingsByModelId(modelId);
+            // 校验setting必须有pyFile,否则可能导致程序崩溃
+            if (!settings.containsKey(MdkConstant.PY_FILE_KEY)) {
+                throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY + "】,请重新上传模型!");
+            }
+
+            if (settings == null) {
+                log.error("模型setting不存在,modelId=" + modelId);
+                return null;
+            }
+            int portLength = sampleDataList.size();
+            Object[] param2Values = new Object[portLength + 2];
+            for (int i = 0; i < portLength; i++) {
+                param2Values[i] = sampleDataList.get(i).getMatrix();
+            }
+            param2Values[portLength] = newModelBean.getDataMap().get("models");
+            param2Values[portLength + 1] = settings;
+
+            log.info("####################### 模拟调整 " + "【itemId:" + predictModel.getItemid() + ",itemName:" + itemName + ",itemNo:" + itemNo + "】 ##########################");
+            log.info("参数: " + JSON.toJSONString(param2Values));
+
+            //IAILMDK.run
+            HashMap<String, Object> modelResult = DllUtils.run(newModelBean, param2Values, predictModel.getMpkprojectid());
+            //打印结果
+            log.info("预测模型计算完成:modelId=" + modelId + ",modelName=" + predictModel.getMethodname() + ",modelResult=" + JSON.toJSONString(modelResult));
+            //判断模型结果
+            if (!modelResult.containsKey(CommonConstant.MDK_STATUS_CODE) || !modelResult.containsKey(CommonConstant.MDK_RESULT) ||
+                    !modelResult.get(CommonConstant.MDK_STATUS_CODE).toString().equals(CommonConstant.MDK_STATUS_100)) {
+                throw new ModelResultErrorException("模型结果异常:" + modelResult);
+            }
+            modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT);
+
+            List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid());
+            Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>();
+            for (MmItemOutputEntity output : itemOutputList) {
+                if (!modelResult.containsKey(output.getResultstr())) {
+                    continue;
+                }
+                OutResultType outResultType = OutResultType.getEumByCode(output.getResultType());
+                switch (outResultType) {
+                    case D1:
+                        double[] temp1 = (double[]) modelResult.get(output.getResultstr());
+                        predictMatrixs.put(output, temp1);
+                        break;
+                    case D2:
+                        double[][] temp2 = (double[][]) modelResult.get(output.getResultstr());
+                        double[] tempColumn = new double[temp2.length];
+                        for (int i = 0; i < tempColumn.length; i++) {
+                            tempColumn[i] = temp2[i][output.getResultIndex()];
+                        }
+                        predictMatrixs.put(output, tempColumn);
+                        break;
+                    case D:
+                        Double temp3 = (Double) modelResult.get(output.getResultstr());
+                        predictMatrixs.put(output, new double[]{temp3});
+                        break;
+                    default:
+                        break;
+                }
+            }
+            result.setPredictMatrixs(predictMatrixs);
+            result.setModelResult(modelResult);
+            result.setPredictTime(predictTime);
+        } catch (ModelResultErrorException ex) {
+            log.error("模型结果异常", ex);
+            throw ex;
+        } catch (Exception ex) {
+            log.error("调用发生异常,异常信息为:{0}", ex.getMessage());
             throw new ModelInvokeException(ex.getMessage());
         }
         return result;

--
Gitblit v1.9.3