From f93760ef25c2a15259b567c87db1f4900b0a42c2 Mon Sep 17 00:00:00 2001 From: 潘志宝 <979469083@qq.com> Date: 星期二, 04 三月 2025 10:07:51 +0800 Subject: [PATCH] 打印异常 --- iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java | 115 ++++++++++++++++++++++++++++++++++++++++++++++++++++----- 1 files changed, 104 insertions(+), 11 deletions(-) diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java index 368ad04..7e0ac4b 100644 --- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java +++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java @@ -3,6 +3,7 @@ import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.JSONArray; import com.iail.model.IAILModel; +import com.iailab.module.model.mdk.vo.StAdjustDeviationDTO; import com.iailab.module.model.enums.CommonConstant; import com.iailab.module.model.common.enums.OutResultType; import com.iailab.module.model.common.exception.ModelResultErrorException; @@ -55,7 +56,7 @@ * @throws ModelInvokeException */ @Override - public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel,String itemName,String itemNo) throws ModelInvokeException { + public PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel, String itemName, String itemNo) throws ModelInvokeException { PredictResultVO result = new PredictResultVO(); if (predictModel == null) { throw new ModelInvokeException("modelEntity is null"); @@ -72,7 +73,7 @@ HashMap<String, Object> settings = getPredictSettingsByModelId(modelId); // 校验setting必须有pyFile,否则可能导致程序崩溃 if (!settings.containsKey(MdkConstant.PY_FILE_KEY)) { - throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY + "】,请重新上传模型!"); + throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY + "】,请重新上传模型!"); } if (settings == null) { @@ -87,12 +88,7 @@ param2Values[portLength] = newModelBean.getDataMap().get("models"); param2Values[portLength + 1] = settings; - log.info("####################### 预测模型 "+ "【itemId:" + predictModel.getItemid() + ",itemName:" + itemName + ",itemNo:" + itemNo + "】 ##########################"); -// JSONObject jsonObjNewModelBean = new JSONObject(); -// jsonObjNewModelBean.put("newModelBean", newModelBean); -// log.info(String.valueOf(jsonObjNewModelBean)); -// JSONObject jsonObjParam2Values = new JSONObject(); -// jsonObjParam2Values.put("param2Values", param2Values); + log.info("####################### 预测模型 " + "【itemId:" + predictModel.getItemid() + ",itemName:" + itemName + ",itemNo:" + itemNo + "】 ##########################"); log.info("参数: " + JSON.toJSONString(param2Values)); //IAILMDK.run @@ -108,7 +104,6 @@ List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid()); Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(); - Map<MmItemOutputEntity, Double> predictDoubleValues = new HashMap<>(); for (MmItemOutputEntity output : itemOutputList) { if (!modelResult.containsKey(output.getResultstr())) { continue; @@ -129,14 +124,13 @@ break; case D: Double temp3 = (Double) modelResult.get(output.getResultstr()); - predictDoubleValues.put(output, temp3); + predictMatrixs.put(output, new double[]{temp3}); break; default: break; } } result.setPredictMatrixs(predictMatrixs); - result.setPredictDoubleValues(predictDoubleValues); result.setModelResult(modelResult); result.setPredictTime(predictTime); } catch (ModelResultErrorException ex) { @@ -153,6 +147,105 @@ } /** + * 预测,模拟调整 + * + * @param predictTime + * @param predictModel + * @param itemName + * @param itemNo + * @param deviationList + * @return + * @throws ModelInvokeException + */ + @Override + public PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel, String itemName, String itemNo, List<StAdjustDeviationDTO> deviationList) throws ModelInvokeException { + PredictResultVO result = new PredictResultVO(); + if (predictModel == null) { + throw new ModelInvokeException("modelEntity is null"); + } + String modelId = predictModel.getId(); + try { + List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime, itemName, new HashMap<>(), deviationList); + String modelPath = predictModel.getModelpath(); + if (modelPath == null) { + log.info("模型路径不存在,modelId=" + modelId); + return null; + } + IAILModel newModelBean = composeNewModelBean(predictModel); + HashMap<String, Object> settings = getPredictSettingsByModelId(modelId); + // 校验setting必须有pyFile,否则可能导致程序崩溃 + if (!settings.containsKey(MdkConstant.PY_FILE_KEY)) { + throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY + "】,请重新上传模型!"); + } + + if (settings == null) { + log.error("模型setting不存在,modelId=" + modelId); + return null; + } + int portLength = sampleDataList.size(); + Object[] param2Values = new Object[portLength + 2]; + for (int i = 0; i < portLength; i++) { + param2Values[i] = sampleDataList.get(i).getMatrix(); + } + param2Values[portLength] = newModelBean.getDataMap().get("models"); + param2Values[portLength + 1] = settings; + + log.info("####################### 模拟调整 " + "【itemId:" + predictModel.getItemid() + ",itemName:" + itemName + ",itemNo:" + itemNo + "】 ##########################"); + log.info("参数: " + JSON.toJSONString(param2Values)); + + //IAILMDK.run + HashMap<String, Object> modelResult = DllUtils.run(newModelBean, param2Values, predictModel.getMpkprojectid()); + //打印结果 + log.info("预测模型计算完成:modelId=" + modelId + ",modelName=" + predictModel.getMethodname() + ",modelResult=" + JSON.toJSONString(modelResult)); + //判断模型结果 + if (!modelResult.containsKey(CommonConstant.MDK_STATUS_CODE) || !modelResult.containsKey(CommonConstant.MDK_RESULT) || + !modelResult.get(CommonConstant.MDK_STATUS_CODE).toString().equals(CommonConstant.MDK_STATUS_100)) { + throw new ModelResultErrorException("模型结果异常:" + modelResult); + } + modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT); + + List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid()); + Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(); + for (MmItemOutputEntity output : itemOutputList) { + if (!modelResult.containsKey(output.getResultstr())) { + continue; + } + OutResultType outResultType = OutResultType.getEumByCode(output.getResultType()); + switch (outResultType) { + case D1: + double[] temp1 = (double[]) modelResult.get(output.getResultstr()); + predictMatrixs.put(output, temp1); + break; + case D2: + double[][] temp2 = (double[][]) modelResult.get(output.getResultstr()); + double[] tempColumn = new double[temp2.length]; + for (int i = 0; i < tempColumn.length; i++) { + tempColumn[i] = temp2[i][output.getResultIndex()]; + } + predictMatrixs.put(output, tempColumn); + break; + case D: + Double temp3 = (Double) modelResult.get(output.getResultstr()); + predictMatrixs.put(output, new double[]{temp3}); + break; + default: + break; + } + } + result.setPredictMatrixs(predictMatrixs); + result.setModelResult(modelResult); + result.setPredictTime(predictTime); + } catch (ModelResultErrorException ex) { + log.error("模型结果异常", ex); + throw ex; + } catch (Exception ex) { + log.error("调用发生异常,异常信息为:{0}", ex.getMessage()); + throw new ModelInvokeException(ex.getMessage()); + } + return result; + } + + /** * 构造IAILMDK.run()方法的newModelBean参数 * * @param predictModel -- Gitblit v1.9.3