From efdc380e66bbc3112eb87d7522f0a37d082082e1 Mon Sep 17 00:00:00 2001 From: dengzedong <dengzedong@email> Date: 星期四, 26 十二月 2024 09:42:07 +0800 Subject: [PATCH] double类型特殊处理 异常处理 --- iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java | 122 +++++++++++++++++++++++++++------------- 1 files changed, 82 insertions(+), 40 deletions(-) diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java index 41246be..6d1ebbd 100644 --- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java +++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java @@ -1,29 +1,34 @@ package com.iailab.module.model.mdk.predict.impl; +import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.JSONArray; import com.alibaba.fastjson.JSONObject; -import com.iail.IAILMDK; import com.iail.model.IAILModel; +import com.iailab.module.model.common.enums.CommonConstant; +import com.iailab.module.model.common.enums.OutResultType; +import com.iailab.module.model.common.exception.ModelResultErrorException; +import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity; import com.iailab.module.model.mcs.pre.entity.MmModelArithSettingsEntity; -import com.iailab.module.model.mcs.pre.entity.MmModelResultstrEntity; import com.iailab.module.model.mcs.pre.entity.MmPredictModelEntity; +import com.iailab.module.model.mcs.pre.enums.ItemRunStatusEnum; +import com.iailab.module.model.mcs.pre.service.MmItemOutputService; import com.iailab.module.model.mcs.pre.service.MmModelArithSettingsService; -import com.iailab.module.model.mcs.pre.service.MmModelResultstrService; import com.iailab.module.model.mdk.common.enums.TypeA; import com.iailab.module.model.mdk.common.exceptions.ModelInvokeException; import com.iailab.module.model.mdk.predict.PredictModelHandler; import com.iailab.module.model.mdk.sample.SampleConstructor; import com.iailab.module.model.mdk.sample.dto.SampleData; import com.iailab.module.model.mdk.vo.PredictResultVO; +import com.iailab.module.model.mpk.common.MdkConstant; import com.iailab.module.model.mpk.common.utils.DllUtils; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; -import java.util.ArrayList; import java.util.Date; import java.util.HashMap; import java.util.List; +import java.util.Map; /** * @author PanZhibao @@ -38,28 +43,40 @@ private MmModelArithSettingsService mmModelArithSettingsService; @Autowired - private MmModelResultstrService mmModelResultstrService; + private MmItemOutputService mmItemOutputService; @Autowired private SampleConstructor sampleConstructor; + /** + * 根据模型预测,返回预测结果 + * + * @param predictTime + * @param predictModel + * @return + * @throws ModelInvokeException + */ @Override - public PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel) throws ModelInvokeException { + public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel,String itemName,String itemNo) throws ModelInvokeException { PredictResultVO result = new PredictResultVO(); if (predictModel == null) { throw new ModelInvokeException("modelEntity is null"); } String modelId = predictModel.getId(); - try { - List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime); + List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime, itemName); String modelPath = predictModel.getModelpath(); if (modelPath == null) { - System.out.println("模型路径不存在,modelId=" + modelId); + log.info("模型路径不存在,modelId=" + modelId); return null; } IAILModel newModelBean = composeNewModelBean(predictModel); HashMap<String, Object> settings = getPredictSettingsByModelId(modelId); + // 校验setting必须有pyFile,否则可能导致程序崩溃 + if (!settings.containsKey(MdkConstant.PY_FILE_KEY)) { + throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY + "】,请重新上传模型!"); + } + if (settings == null) { log.error("模型setting不存在,modelId=" + modelId); return null; @@ -67,47 +84,72 @@ int portLength = sampleDataList.size(); Object[] param2Values = new Object[portLength + 2]; for (int i = 0; i < portLength; i++) { - param2Values[i]=sampleDataList.get(i).getMatrix(); + param2Values[i] = sampleDataList.get(i).getMatrix(); } param2Values[portLength] = newModelBean.getDataMap().get("models"); - param2Values[portLength+1] = settings; + param2Values[portLength + 1] = settings; - log.info("#######################预测模型 " + predictModel.getItemid() + " ##########################"); - JSONObject jsonObjNewModelBean = new JSONObject(); - jsonObjNewModelBean.put("newModelBean", newModelBean); - log.info(String.valueOf(jsonObjNewModelBean)); - JSONObject jsonObjParam2Values = new JSONObject(); - jsonObjParam2Values.put("param2Values", param2Values); - log.info(String.valueOf(jsonObjParam2Values)); + log.info("####################### 预测模型 "+ "【itemId:" + predictModel.getItemid() + ",itemName:" + itemName + ",itemNo:" + itemNo + "】 ##########################"); +// JSONObject jsonObjNewModelBean = new JSONObject(); +// jsonObjNewModelBean.put("newModelBean", newModelBean); +// log.info(String.valueOf(jsonObjNewModelBean)); +// JSONObject jsonObjParam2Values = new JSONObject(); +// jsonObjParam2Values.put("param2Values", param2Values); + log.info("参数: " + JSON.toJSONString(param2Values)); //IAILMDK.run -// HashMap<String, Object> modelResult = IAILMDK.run(newModelBean, param2Values); HashMap<String, Object> modelResult = DllUtils.run(newModelBean, param2Values, predictModel.getMpkprojectid()); //打印结果 - JSONObject jsonObjResult = new JSONObject(); - jsonObjResult.put("result", modelResult); - log.info(String.valueOf(jsonObjResult)); - - MmModelResultstrEntity modelResultstr = mmModelResultstrService.getInfo(predictModel.getResultstrid()); - log.info("模型计算完成:modelId=" + modelId + result); - if (modelResult.containsKey(modelResultstr.getResultstr())) { - Double[][] temp = (Double[][]) modelResult.get(modelResultstr.getResultstr()); - double[][] temp1 = new double[temp.length][temp[0].length]; - for (int i = 0; i < temp.length; i++) { - for (int j = 0; j < temp[i].length; j++) { - temp1[i][j] = temp[i][j].doubleValue(); - } - } - result.setPredictMatrix(temp1); + log.info("预测模型计算完成:modelId=" + modelId + ",modelName=" + predictModel.getMethodname() + ",modelResult=" + JSON.toJSONString(modelResult)); + //判断模型结果 + if (!modelResult.containsKey(CommonConstant.MDK_STATUS_CODE) || !modelResult.containsKey(CommonConstant.MDK_RESULT) || + !modelResult.get(CommonConstant.MDK_STATUS_CODE).toString().equals(CommonConstant.MDK_STATUS_100)) { + throw new ModelResultErrorException("模型结果异常:" + modelResult); } + modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT); + + List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid()); + Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(); + Map<MmItemOutputEntity, Double> predictDoubleValues = new HashMap<>(); + for (MmItemOutputEntity output : itemOutputList) { + if (!modelResult.containsKey(output.getResultstr())) { + continue; + } + OutResultType outResultType = OutResultType.getEumByCode(output.getResultType()); + switch (outResultType) { + case D1: + double[] temp1 = (double[]) modelResult.get(output.getResultstr()); + predictMatrixs.put(output, temp1); + break; + case D2: + double[][] temp2 = (double[][]) modelResult.get(output.getResultstr()); + double[] tempColumn = new double[temp2.length]; + for (int i = 0; i < tempColumn.length; i++) { + tempColumn[i] = temp2[i][output.getResultIndex()]; + } + predictMatrixs.put(output, tempColumn); + break; + case D: + Double temp3 = (Double) modelResult.get(output.getResultstr()); + predictDoubleValues.put(output, temp3); + break; + default: + break; + } + } + result.setPredictMatrixs(predictMatrixs); + result.setPredictDoubleValues(predictDoubleValues); result.setModelResult(modelResult); result.setPredictTime(predictTime); + } catch (ModelResultErrorException ex) { +// ex.printStackTrace(); + log.error("模型结果异常", ex); + throw ex; } catch (Exception ex) { - log.error("IAILModel对象构造失败,modelId=" + modelId); - log.error(ex.getMessage()); - log.error("调用发生异常,异常信息为:{}" , ex); - ex.printStackTrace(); - +// log.error("调用发生异常,异常信息为:{0}", ex.getMessage()); +// ex.printStackTrace(); + log.error("模型运行异常", ex); + throw new ModelInvokeException(ex.getMessage()); } return result; } @@ -135,7 +177,7 @@ newModelBean.setParamsArray(paramsArray); HashMap<String, Object> dataMap = new HashMap<>(); HashMap<String, String> models = new HashMap<>(1); - models.put("paramFile", predictModel.getModelpath()); + models.put("model_path", predictModel.getModelpath()); dataMap.put("models", models); newModelBean.setDataMap(dataMap); return newModelBean; -- Gitblit v1.9.3