From c4b37d26df82e2988e4784d847ff75102c2121c4 Mon Sep 17 00:00:00 2001
From: dengzedong <dengzedong@email>
Date: 星期三, 25 十二月 2024 15:30:53 +0800
Subject: [PATCH] 预测项输入特殊处理double类型

---
 iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mcs/pre/service/impl/MmItemResultServiceImpl.java |  127 +++++++++++++++++++-----------------------
 1 files changed, 57 insertions(+), 70 deletions(-)

diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mcs/pre/service/impl/MmItemResultServiceImpl.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mcs/pre/service/impl/MmItemResultServiceImpl.java
index 0465a2d..26ec871 100644
--- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mcs/pre/service/impl/MmItemResultServiceImpl.java
+++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mcs/pre/service/impl/MmItemResultServiceImpl.java
@@ -2,13 +2,12 @@
 
 import com.alibaba.fastjson.JSONArray;
 import com.baomidou.mybatisplus.core.conditions.query.QueryWrapper;
-import com.iailab.framework.common.service.impl.BaseServiceImpl;
-import com.iailab.module.data.api.point.dto.ApiPointDTO;
+import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
+import com.iailab.framework.common.util.date.DateUtils;
 import com.iailab.module.model.mcs.pre.dao.MmItemResultDao;
 import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity;
 import com.iailab.module.model.mcs.pre.entity.MmItemResultEntity;
 import com.iailab.module.model.mcs.pre.entity.MmItemResultJsonEntity;
-import com.iailab.module.model.mcs.pre.service.MmItemOutputService;
 import com.iailab.module.model.mcs.pre.service.MmItemResultService;
 import com.iailab.module.model.mdk.vo.DataValueVO;
 import org.springframework.beans.factory.annotation.Autowired;
@@ -25,47 +24,21 @@
  * @author PanZhibao
  * @date 2021年05月28日 10:34
  */
-@Service("mmItemResultService")
-public class MmItemResultServiceImpl extends BaseServiceImpl<MmItemResultDao, MmItemResultEntity>
-        implements MmItemResultService {
+@Service
+public class MmItemResultServiceImpl extends ServiceImpl<MmItemResultDao, MmItemResultEntity> implements MmItemResultService {
 
     private final int max_group_count = 100;
 
     private final String T_MM_ITEM_RESULT = "T_MM_ITEM_RESULT";
 
     @Autowired
-    private MmItemOutputService mmItemOutputService;
-
-    @Override
-    public List<MmItemResultEntity> getListByOutputId(String outputid, Map<String, Object> params) {
-
-        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
-        Date startDateParam = null;
-        try {
-            startDateParam = sdf.parse((String)params.get("startTime"));
-        } catch (ParseException e) {
-            e.printStackTrace();
-        }
-        Date endDateParam = null;
-        try {
-            endDateParam = sdf.parse((String)params.get("endTime"));
-        } catch (ParseException e) {
-            e.printStackTrace();
-        }
-
-        List<MmItemResultEntity> list = baseDao.selectList(
-                new QueryWrapper<MmItemResultEntity>()
-                        .eq("outputid", outputid)
-                        .between("datatime", startDateParam, endDateParam)
-                        .orderByAsc("datatime")
-        );
-        return list;
-    }
+    private MmItemResultDao mmItemResultDao;
 
     @Override
     public void savePredictValue(Map<String, List<DataValueVO>> predictValueMap, int t, String nIndex, Date predictTime) {
         List<MmItemResultEntity> importList = new ArrayList<>();
         List<MmItemResultEntity> lastList = new ArrayList<>();
+
         for (Map.Entry<String, List<DataValueVO>> entry : predictValueMap.entrySet()) {
             for (DataValueVO dataVo : entry.getValue()) {
                 MmItemResultEntity importData = new MmItemResultEntity();
@@ -78,9 +51,9 @@
 
             List<DataValueVO> lastVoList = new ArrayList<>();
             int size = entry.getValue().size();
-            t = t > 0 ? t : 0;
+            t = Math.max(t, 0);
             int n = "n".equals(nIndex) ? size : Integer.parseInt(nIndex);
-            int length = (n - t) > 0 ? (n - t) : 0; //预测完不变的数据长度
+            int length = Math.max((n - t), 0); //预测完不变的数据长度
             if (size >= n) {
                 for (int i = 0; i < (size - length); i ++) {
                     int index = length + i;
@@ -103,49 +76,28 @@
             resultJson.setId(UUID.randomUUID().toString());
             resultJson.setOutputid(entry.getKey());
             resultJson.setPredicttime(predictTime);
-            resultJson.setJsonvalue(JSONArray.toJSONString(entry.getValue()));
+            List<Double> jsonValueList = entry.getValue().stream().map(valueVO -> {
+                return valueVO.getDataValue();
+            }).collect(Collectors.toList());
+            resultJson.setJsonvalue(JSONArray.toJSONString(jsonValueList));
             Map<String, Object> map4 = new HashMap(2);
             map4.put("TABLENAME", "T_MM_ITEM_RESULT_JSON");
             map4.put("entity", resultJson);
-            baseDao.savePredictJsonValue(map4);
-        }
+            mmItemResultDao.savePredictJsonValue(map4);
 
-        Map<String, Object> params = new HashMap(4);
-        params.put("TABLENAME", T_MM_ITEM_RESULT);
-        params.put("OUTPUTID", importList.get(0).getOutputid());
-        params.put("STARTTIME", importList.get(0).getDatatime());
-        params.put("ENDTIME", importList.get(importList.size() - 1).getDatatime());
-        baseDao.deletePredictValue(params);
-
-        int num1 = importList.size() / max_group_count;
-        int num2 = importList.size() % max_group_count;
-        if (num2 != 0) {
-            num1++;
+            Map<String, Object> params = new HashMap(4);
+            params.put("TABLENAME", T_MM_ITEM_RESULT);
+            params.put("OUTPUTID", entry.getKey());
+            params.put("STARTTIME", importList.get(0).getDatatime());
+            params.put("ENDTIME", importList.get(importList.size() - 1).getDatatime());
+            mmItemResultDao.deletePredictValue(params);
         }
-
-        List<MmItemResultEntity> tempList;
-        //先删除已经存在的数据,再插入新数据
-        for (int i = 0; i < num1; i++) {
-            int startIndex = max_group_count * i;
-            int count = max_group_count;
-            if (num2!=0 && i == num1 - 1) {
-                count = num2;
-            }
-            tempList = new ArrayList<>();
-            //获取某个索引范围内的对象集合
-            for (int j = startIndex; j < startIndex + count; j++) {
-                tempList.add(importList.get(j));
-            }
-            Map<String, Object> map2 = new HashMap<>(2);
-            map2.put("TABLENAME", T_MM_ITEM_RESULT);
-            map2.put("list", tempList);
-            baseDao.savePredictValue(map2);
-        }
+        mmItemResultDao.insertBatch(importList,max_group_count);
 
         Map<String, Object> map3 = new HashMap<>(2);
         map3.put("TABLENAME", "T_MM_ITEM_RESULT_LAST_POINT");
         map3.put("list", lastList);
-        baseDao.savePredictValue(map3);
+        mmItemResultDao.savePredictValue(map3);
     }
 
     @Override
@@ -155,7 +107,7 @@
                 .eq("outputid", outputid)
                 .between("datatime", startTime, endTime)
                 .orderByAsc("datatime");
-        List<MmItemResultEntity> list = baseDao.selectList(queryWrapper);
+        List<MmItemResultEntity> list = mmItemResultDao.selectList(queryWrapper);
         if (CollectionUtils.isEmpty(list)) {
             return result;
         }
@@ -167,4 +119,39 @@
         }).collect(Collectors.toList());
         return result;
     }
+
+    @Override
+    public List<Object[]> getData(String outputid, Date startTime, Date endTime, String timeFormat) {
+        List<Object[]> result = new ArrayList<>();
+        QueryWrapper<MmItemResultEntity> queryWrapper = new QueryWrapper<MmItemResultEntity>()
+                .eq("outputid", outputid)
+                .between("datatime", startTime, endTime)
+                .orderByAsc("datatime");
+        List<MmItemResultEntity> list = mmItemResultDao.selectList(queryWrapper);
+        if (CollectionUtils.isEmpty(list)) {
+            return result;
+        }
+        list.forEach(item -> {
+            Object[] dataItem = new Object[2];
+            dataItem[0] = DateUtils.format(item.getDatatime(), timeFormat);
+            dataItem[1] = item.getDatavalue().setScale(2, BigDecimal.ROUND_HALF_UP);
+            result.add(dataItem);
+        });
+        return result;
+    }
+
+    @Override
+    public void savePredictValue(Map<MmItemOutputEntity, Double> predictDoubleValues, Date predictTime) {
+        for (Map.Entry<MmItemOutputEntity, Double> entry : predictDoubleValues.entrySet()) {
+            MmItemResultJsonEntity resultJson = new MmItemResultJsonEntity();
+            resultJson.setId(UUID.randomUUID().toString());
+            resultJson.setOutputid(entry.getKey().getId());
+            resultJson.setPredicttime(predictTime);
+            resultJson.setCumulant(String.valueOf(entry.getValue()));
+            Map<String, Object> map4 = new HashMap(2);
+            map4.put("TABLENAME", "T_MM_ITEM_RESULT_JSON");
+            map4.put("entity", resultJson);
+            mmItemResultDao.savePredictJsonValue(map4);
+        }
+    }
 }

--
Gitblit v1.9.3