From 97d38f7b7f7d95fe38cdbb79960106c15454b6ba Mon Sep 17 00:00:00 2001 From: 潘志宝 <979469083@qq.com> Date: 星期二, 19 十一月 2024 15:23:51 +0800 Subject: [PATCH] 预警信息 --- iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java | 79 ++++++++++++++++++++++++++++----------- 1 files changed, 57 insertions(+), 22 deletions(-) diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java index 7b47923..3bdf3d4 100644 --- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java +++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java @@ -2,27 +2,25 @@ import com.alibaba.fastjson.JSONArray; import com.alibaba.fastjson.JSONObject; -import com.iail.IAILMDK; import com.iail.model.IAILModel; +import com.iailab.module.model.common.enums.CommonConstant; +import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity; import com.iailab.module.model.mcs.pre.entity.MmModelArithSettingsEntity; -import com.iailab.module.model.mcs.pre.entity.MmModelResultstrEntity; import com.iailab.module.model.mcs.pre.entity.MmPredictModelEntity; +import com.iailab.module.model.mcs.pre.service.MmItemOutputService; import com.iailab.module.model.mcs.pre.service.MmModelArithSettingsService; -import com.iailab.module.model.mcs.pre.service.MmModelResultstrService; import com.iailab.module.model.mdk.common.enums.TypeA; import com.iailab.module.model.mdk.common.exceptions.ModelInvokeException; import com.iailab.module.model.mdk.predict.PredictModelHandler; import com.iailab.module.model.mdk.sample.SampleConstructor; import com.iailab.module.model.mdk.sample.dto.SampleData; import com.iailab.module.model.mdk.vo.PredictResultVO; +import com.iailab.module.model.mpk.common.utils.DllUtils; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; -import java.util.ArrayList; -import java.util.Date; -import java.util.HashMap; -import java.util.List; +import java.util.*; /** * @author PanZhibao @@ -37,13 +35,21 @@ private MmModelArithSettingsService mmModelArithSettingsService; @Autowired - private MmModelResultstrService mmModelResultstrService; + private MmItemOutputService mmItemOutputService; @Autowired private SampleConstructor sampleConstructor; + /** + * 根据模型预测,返回预测结果 + * + * @param predictTime + * @param predictModel + * @return + * @throws ModelInvokeException + */ @Override - public PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel) throws ModelInvokeException { + public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel) throws ModelInvokeException { PredictResultVO result = new PredictResultVO(); if (predictModel == null) { throw new ModelInvokeException("modelEntity is null"); @@ -66,10 +72,10 @@ int portLength = sampleDataList.size(); Object[] param2Values = new Object[portLength + 2]; for (int i = 0; i < portLength; i++) { - param2Values[i]=sampleDataList.get(i).getMatrix(); + param2Values[i] = sampleDataList.get(i).getMatrix(); } param2Values[portLength] = newModelBean.getDataMap().get("models"); - param2Values[portLength+1] = settings; + param2Values[portLength + 1] = settings; log.info("#######################预测模型 " + predictModel.getItemid() + " ##########################"); JSONObject jsonObjNewModelBean = new JSONObject(); @@ -80,23 +86,52 @@ log.info(String.valueOf(jsonObjParam2Values)); //IAILMDK.run - HashMap<String, Object> modelResult = IAILMDK.run(newModelBean, param2Values); + HashMap<String, Object> modelResult = DllUtils.run(newModelBean, param2Values, predictModel.getMpkprojectid()); + if (!modelResult.containsKey(CommonConstant.MDK_STATUS_CODE) || !modelResult.containsKey(CommonConstant.MDK_RESULT) || + !modelResult.get(CommonConstant.MDK_STATUS_CODE).toString().equals(CommonConstant.MDK_STATUS_100)) { + throw new RuntimeException("模型结果异常:" + modelResult); + } + modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT); //打印结果 JSONObject jsonObjResult = new JSONObject(); - jsonObjResult.put("result", result); + jsonObjResult.put("result", modelResult); log.info(String.valueOf(jsonObjResult)); - MmModelResultstrEntity modelResultstr = mmModelResultstrService.getInfo(predictModel.getResultstrid()); - log.info("模型计算完成:modelId=" + modelId + result); - double[][] temp = (double[][]) modelResult.get(modelResultstr.getResultstr()); - result.setPredictMatrix(temp); + List<MmItemOutputEntity> ItemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid()); + log.info("模型计算完成:modelId=" + modelId + modelResult); + + Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(ItemOutputList.size()); + + for (MmItemOutputEntity outputEntity : ItemOutputList) { + String resultStr = outputEntity.getResultstr(); + if (modelResult.containsKey(resultStr)) { + if (outputEntity.getResultType() == 1) { + // 一维数组 + Double[] temp = (Double[]) modelResult.get(resultStr); + double[] temp1 = new double[temp.length]; + for (int i = 0; i < temp.length; i++) { + temp1[i] = temp[i].doubleValue(); + } + predictMatrixs.put(outputEntity, temp1); + } else if (outputEntity.getResultType() == 2) { + // 二维数组 + Double[][] temp = (Double[][]) modelResult.get(resultStr); + Double[] temp2 = temp[outputEntity.getResultIndex()]; + double[] temp1 = new double[temp2.length]; + for (int i = 0; i < temp2.length; i++) { + temp1[i] = temp2[i].doubleValue(); + } + predictMatrixs.put(outputEntity, temp1); + } + } + } + result.setPredictMatrixs(predictMatrixs); + result.setModelResult(modelResult); result.setPredictTime(predictTime); } catch (Exception ex) { - log.error("IAILModel对象构造失败,modelId=" + modelId); - log.error(ex.getMessage()); - log.error("调用发生异常,异常信息为:{}" , ex); + log.error("调用发生异常,异常信息为:{}", ex); ex.printStackTrace(); - + throw new ModelInvokeException(ex.getMessage()); } return result; } @@ -124,7 +159,7 @@ newModelBean.setParamsArray(paramsArray); HashMap<String, Object> dataMap = new HashMap<>(); HashMap<String, String> models = new HashMap<>(1); - models.put("paramFile", predictModel.getModelpath()); + models.put("model_path", predictModel.getModelpath()); dataMap.put("models", models); newModelBean.setDataMap(dataMap); return newModelBean; -- Gitblit v1.9.3