From 97d38f7b7f7d95fe38cdbb79960106c15454b6ba Mon Sep 17 00:00:00 2001
From: 潘志宝 <979469083@qq.com>
Date: 星期二, 19 十一月 2024 15:23:51 +0800
Subject: [PATCH] 预警信息

---
 iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java |   76 +++++++++++++++++++++++++-------------
 1 files changed, 50 insertions(+), 26 deletions(-)

diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
index 41246be..3bdf3d4 100644
--- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
+++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
@@ -2,13 +2,13 @@
 
 import com.alibaba.fastjson.JSONArray;
 import com.alibaba.fastjson.JSONObject;
-import com.iail.IAILMDK;
 import com.iail.model.IAILModel;
+import com.iailab.module.model.common.enums.CommonConstant;
+import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity;
 import com.iailab.module.model.mcs.pre.entity.MmModelArithSettingsEntity;
-import com.iailab.module.model.mcs.pre.entity.MmModelResultstrEntity;
 import com.iailab.module.model.mcs.pre.entity.MmPredictModelEntity;
+import com.iailab.module.model.mcs.pre.service.MmItemOutputService;
 import com.iailab.module.model.mcs.pre.service.MmModelArithSettingsService;
-import com.iailab.module.model.mcs.pre.service.MmModelResultstrService;
 import com.iailab.module.model.mdk.common.enums.TypeA;
 import com.iailab.module.model.mdk.common.exceptions.ModelInvokeException;
 import com.iailab.module.model.mdk.predict.PredictModelHandler;
@@ -20,10 +20,7 @@
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.stereotype.Component;
 
-import java.util.ArrayList;
-import java.util.Date;
-import java.util.HashMap;
-import java.util.List;
+import java.util.*;
 
 /**
  * @author PanZhibao
@@ -38,13 +35,21 @@
     private MmModelArithSettingsService mmModelArithSettingsService;
 
     @Autowired
-    private MmModelResultstrService mmModelResultstrService;
+    private MmItemOutputService mmItemOutputService;
 
     @Autowired
     private SampleConstructor sampleConstructor;
 
+    /**
+     * 根据模型预测,返回预测结果
+     *
+     * @param predictTime
+     * @param predictModel
+     * @return
+     * @throws ModelInvokeException
+     */
     @Override
-    public PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel) throws ModelInvokeException {
+    public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel) throws ModelInvokeException {
         PredictResultVO result = new PredictResultVO();
         if (predictModel == null) {
             throw new ModelInvokeException("modelEntity is null");
@@ -67,10 +72,10 @@
             int portLength = sampleDataList.size();
             Object[] param2Values = new Object[portLength + 2];
             for (int i = 0; i < portLength; i++) {
-                param2Values[i]=sampleDataList.get(i).getMatrix();
+                param2Values[i] = sampleDataList.get(i).getMatrix();
             }
             param2Values[portLength] = newModelBean.getDataMap().get("models");
-            param2Values[portLength+1] = settings;
+            param2Values[portLength + 1] = settings;
 
             log.info("#######################预测模型 " + predictModel.getItemid() + " ##########################");
             JSONObject jsonObjNewModelBean = new JSONObject();
@@ -81,33 +86,52 @@
             log.info(String.valueOf(jsonObjParam2Values));
 
             //IAILMDK.run
-//            HashMap<String, Object> modelResult = IAILMDK.run(newModelBean, param2Values);
             HashMap<String, Object> modelResult = DllUtils.run(newModelBean, param2Values, predictModel.getMpkprojectid());
+            if (!modelResult.containsKey(CommonConstant.MDK_STATUS_CODE) || !modelResult.containsKey(CommonConstant.MDK_RESULT) ||
+                    !modelResult.get(CommonConstant.MDK_STATUS_CODE).toString().equals(CommonConstant.MDK_STATUS_100)) {
+                throw new RuntimeException("模型结果异常:" + modelResult);
+            }
+            modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT);
             //打印结果
             JSONObject jsonObjResult = new JSONObject();
             jsonObjResult.put("result", modelResult);
             log.info(String.valueOf(jsonObjResult));
 
-            MmModelResultstrEntity modelResultstr = mmModelResultstrService.getInfo(predictModel.getResultstrid());
-            log.info("模型计算完成:modelId=" + modelId + result);
-            if (modelResult.containsKey(modelResultstr.getResultstr())) {
-                Double[][] temp = (Double[][]) modelResult.get(modelResultstr.getResultstr());
-                double[][] temp1 = new double[temp.length][temp[0].length];
-                for (int i = 0; i < temp.length; i++) {
-                    for (int j = 0; j < temp[i].length; j++) {
-                        temp1[i][j] = temp[i][j].doubleValue();
+            List<MmItemOutputEntity> ItemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid());
+            log.info("模型计算完成:modelId=" + modelId + modelResult);
+
+            Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(ItemOutputList.size());
+
+            for (MmItemOutputEntity outputEntity : ItemOutputList) {
+                String resultStr = outputEntity.getResultstr();
+                if (modelResult.containsKey(resultStr)) {
+                    if (outputEntity.getResultType() == 1) {
+                        // 一维数组
+                        Double[] temp = (Double[]) modelResult.get(resultStr);
+                        double[] temp1 = new double[temp.length];
+                        for (int i = 0; i < temp.length; i++) {
+                            temp1[i] = temp[i].doubleValue();
+                        }
+                        predictMatrixs.put(outputEntity, temp1);
+                    } else if (outputEntity.getResultType() == 2) {
+                        // 二维数组
+                        Double[][] temp = (Double[][]) modelResult.get(resultStr);
+                        Double[] temp2 = temp[outputEntity.getResultIndex()];
+                        double[] temp1 = new double[temp2.length];
+                        for (int i = 0; i < temp2.length; i++) {
+                            temp1[i] = temp2[i].doubleValue();
+                        }
+                        predictMatrixs.put(outputEntity, temp1);
                     }
                 }
-                result.setPredictMatrix(temp1);
             }
+            result.setPredictMatrixs(predictMatrixs);
             result.setModelResult(modelResult);
             result.setPredictTime(predictTime);
         } catch (Exception ex) {
-            log.error("IAILModel对象构造失败,modelId=" + modelId);
-            log.error(ex.getMessage());
-            log.error("调用发生异常,异常信息为:{}" , ex);
+            log.error("调用发生异常,异常信息为:{}", ex);
             ex.printStackTrace();
-
+            throw new ModelInvokeException(ex.getMessage());
         }
         return result;
     }
@@ -135,7 +159,7 @@
         newModelBean.setParamsArray(paramsArray);
         HashMap<String, Object> dataMap = new HashMap<>();
         HashMap<String, String> models = new HashMap<>(1);
-        models.put("paramFile", predictModel.getModelpath());
+        models.put("model_path", predictModel.getModelpath());
         dataMap.put("models", models);
         newModelBean.setDataMap(dataMap);
         return newModelBean;

--
Gitblit v1.9.3