From 8bf5531fcc2566bd932216e1a8dafab2a59f4f78 Mon Sep 17 00:00:00 2001
From: dengzedong <dengzedong@email>
Date: 星期一, 23 十二月 2024 15:58:46 +0800
Subject: [PATCH] sampleInfo.setPlanMap 统一获取计划数据的信息,避免重复查询

---
 iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java |  100 +++++++++++++++++++++++++++++--------------------
 1 files changed, 59 insertions(+), 41 deletions(-)

diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
index 5a107da..c66d887 100644
--- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
+++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
@@ -1,12 +1,16 @@
 package com.iailab.module.model.mdk.predict.impl;
 
+import com.alibaba.fastjson.JSON;
 import com.alibaba.fastjson.JSONArray;
 import com.alibaba.fastjson.JSONObject;
 import com.iail.model.IAILModel;
 import com.iailab.module.model.common.enums.CommonConstant;
+import com.iailab.module.model.common.enums.OutResultType;
+import com.iailab.module.model.common.exception.ModelResultErrorException;
 import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity;
 import com.iailab.module.model.mcs.pre.entity.MmModelArithSettingsEntity;
 import com.iailab.module.model.mcs.pre.entity.MmPredictModelEntity;
+import com.iailab.module.model.mcs.pre.enums.ItemRunStatusEnum;
 import com.iailab.module.model.mcs.pre.service.MmItemOutputService;
 import com.iailab.module.model.mcs.pre.service.MmModelArithSettingsService;
 import com.iailab.module.model.mdk.common.enums.TypeA;
@@ -15,12 +19,16 @@
 import com.iailab.module.model.mdk.sample.SampleConstructor;
 import com.iailab.module.model.mdk.sample.dto.SampleData;
 import com.iailab.module.model.mdk.vo.PredictResultVO;
+import com.iailab.module.model.mpk.common.MdkConstant;
 import com.iailab.module.model.mpk.common.utils.DllUtils;
 import lombok.extern.slf4j.Slf4j;
 import org.springframework.beans.factory.annotation.Autowired;
 import org.springframework.stereotype.Component;
 
-import java.util.*;
+import java.util.Date;
+import java.util.HashMap;
+import java.util.List;
+import java.util.Map;
 
 /**
  * @author PanZhibao
@@ -49,22 +57,26 @@
      * @throws ModelInvokeException
      */
     @Override
-    public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel) throws ModelInvokeException {
+    public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel,String itemName) throws ModelInvokeException {
         PredictResultVO result = new PredictResultVO();
         if (predictModel == null) {
             throw new ModelInvokeException("modelEntity is null");
         }
         String modelId = predictModel.getId();
-
         try {
-            List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime);
+            List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime, itemName);
             String modelPath = predictModel.getModelpath();
             if (modelPath == null) {
-                System.out.println("模型路径不存在,modelId=" + modelId);
+                log.info("模型路径不存在,modelId=" + modelId);
                 return null;
             }
             IAILModel newModelBean = composeNewModelBean(predictModel);
             HashMap<String, Object> settings = getPredictSettingsByModelId(modelId);
+            // 校验setting必须有pyFile,否则可能导致程序崩溃
+            if (!settings.containsKey(MdkConstant.PY_FILE_KEY)) {
+                throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY +  "】,请重新上传模型!");
+            }
+
             if (settings == null) {
                 log.error("模型setting不存在,modelId=" + modelId);
                 return null;
@@ -77,61 +89,67 @@
             param2Values[portLength] = newModelBean.getDataMap().get("models");
             param2Values[portLength + 1] = settings;
 
-            log.info("#######################预测模型 " + predictModel.getItemid() + " ##########################");
-            JSONObject jsonObjNewModelBean = new JSONObject();
-            jsonObjNewModelBean.put("newModelBean", newModelBean);
-            log.info(String.valueOf(jsonObjNewModelBean));
-            JSONObject jsonObjParam2Values = new JSONObject();
-            jsonObjParam2Values.put("param2Values", param2Values);
-            log.info(String.valueOf(jsonObjParam2Values));
+            log.info("####################### 预测模型 "+ "【itemId:" + predictModel.getItemid() + ",itemName" + itemName + "】 ##########################");
+//            JSONObject jsonObjNewModelBean = new JSONObject();
+//            jsonObjNewModelBean.put("newModelBean", newModelBean);
+//            log.info(String.valueOf(jsonObjNewModelBean));
+//            JSONObject jsonObjParam2Values = new JSONObject();
+//            jsonObjParam2Values.put("param2Values", param2Values);
+            log.info("参数: " + JSON.toJSONString(param2Values));
 
             //IAILMDK.run
             HashMap<String, Object> modelResult = DllUtils.run(newModelBean, param2Values, predictModel.getMpkprojectid());
             if (!modelResult.containsKey(CommonConstant.MDK_STATUS_CODE) || !modelResult.containsKey(CommonConstant.MDK_RESULT) ||
                     !modelResult.get(CommonConstant.MDK_STATUS_CODE).toString().equals(CommonConstant.MDK_STATUS_100)) {
-                throw new RuntimeException("模型结果异常:" + modelResult);
+                throw new ModelResultErrorException("模型结果异常:" + modelResult);
             }
             modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT);
             //打印结果
+            log.info("预测模型计算完成:modelId=" + modelId + ",modelName" + predictModel.getMethodname());
             JSONObject jsonObjResult = new JSONObject();
             jsonObjResult.put("result", modelResult);
             log.info(String.valueOf(jsonObjResult));
 
-            List<MmItemOutputEntity> ItemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid());
-            log.info("模型计算完成:modelId=" + modelId + modelResult);
-
-            Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(ItemOutputList.size());
-
-            for (MmItemOutputEntity outputEntity : ItemOutputList) {
-                String resultStr = outputEntity.getResultstr();
-                if (modelResult.containsKey(resultStr)) {
-                    if (outputEntity.getResultType() == 1) {
-                        // 一维数组
-                        Double[] temp = (Double[]) modelResult.get(resultStr);
-                        double[] temp1 = new double[temp.length];
-                        for (int i = 0; i < temp.length; i++) {
-                            temp1[i] = temp[i].doubleValue();
+            List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid());
+            Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>();
+            Map<MmItemOutputEntity, Double> predictDoubleValues = new HashMap<>();
+            for (MmItemOutputEntity output : itemOutputList) {
+                if (!modelResult.containsKey(output.getResultstr())) {
+                    continue;
+                }
+                OutResultType outResultType = OutResultType.getEumByCode(output.getResultType());
+                switch (outResultType) {
+                    case D1:
+                        double[] temp1 = (double[]) modelResult.get(output.getResultstr());
+                        predictMatrixs.put(output, temp1);
+                        break;
+                    case D2:
+                        double[][] temp2 = (double[][]) modelResult.get(output.getResultstr());
+                        double[] tempColumn = new double[temp2.length];
+                        for (int i = 0; i < tempColumn.length; i++) {
+                            tempColumn[i] = temp2[i][output.getResultIndex()];
                         }
-                        predictMatrixs.put(outputEntity, temp1);
-                    } else if (outputEntity.getResultType() == 2) {
-                        // 二维数组
-                        Double[][] temp = (Double[][]) modelResult.get(resultStr);
-                        Double[] temp2 = temp[outputEntity.getResultIndex()];
-                        double[] temp1 = new double[temp2.length];
-                        for (int i = 0; i < temp2.length; i++) {
-                            temp1[i] = temp2[i].doubleValue();
-                        }
-                        predictMatrixs.put(outputEntity, temp1);
-                    }
+                        predictMatrixs.put(output, tempColumn);
+                        break;
+                    case D:
+                        Double temp3 = (Double) modelResult.get(output.getResultstr());
+                        predictDoubleValues.put(output, temp3);
+                        break;
+                    default:
+                        break;
                 }
             }
             result.setPredictMatrixs(predictMatrixs);
+            result.setPredictDoubleValues(predictDoubleValues);
             result.setModelResult(modelResult);
             result.setPredictTime(predictTime);
-        } catch (Exception ex) {
-            log.error("调用发生异常,异常信息为:{}", ex);
-            log.error(ex.getMessage());
+        } catch (ModelResultErrorException ex) {
             ex.printStackTrace();
+            throw ex;
+        } catch (Exception ex) {
+            log.error("调用发生异常,异常信息为:{1}", ex);
+//            ex.printStackTrace();
+            throw new ModelInvokeException(ex.getMessage());
         }
         return result;
     }

--
Gitblit v1.9.3