From 7f0bcd00c556889ba890e5e68c681f1b5d4267e1 Mon Sep 17 00:00:00 2001 From: dengzedong <dengzedong@email> Date: 星期四, 19 十二月 2024 18:07:20 +0800 Subject: [PATCH] 预测项状态添加模型结果异常 --- iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java | 89 ++++++++++++++++++++++++++------------------ 1 files changed, 52 insertions(+), 37 deletions(-) diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java index 5a107da..f2c3cef 100644 --- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java +++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java @@ -1,12 +1,15 @@ package com.iailab.module.model.mdk.predict.impl; +import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.JSONArray; import com.alibaba.fastjson.JSONObject; import com.iail.model.IAILModel; import com.iailab.module.model.common.enums.CommonConstant; +import com.iailab.module.model.common.enums.OutResultType; import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity; import com.iailab.module.model.mcs.pre.entity.MmModelArithSettingsEntity; import com.iailab.module.model.mcs.pre.entity.MmPredictModelEntity; +import com.iailab.module.model.mcs.pre.enums.ItemRunStatusEnum; import com.iailab.module.model.mcs.pre.service.MmItemOutputService; import com.iailab.module.model.mcs.pre.service.MmModelArithSettingsService; import com.iailab.module.model.mdk.common.enums.TypeA; @@ -15,12 +18,16 @@ import com.iailab.module.model.mdk.sample.SampleConstructor; import com.iailab.module.model.mdk.sample.dto.SampleData; import com.iailab.module.model.mdk.vo.PredictResultVO; +import com.iailab.module.model.mpk.common.MdkConstant; import com.iailab.module.model.mpk.common.utils.DllUtils; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; -import java.util.*; +import java.util.Date; +import java.util.HashMap; +import java.util.List; +import java.util.Map; /** * @author PanZhibao @@ -49,22 +56,26 @@ * @throws ModelInvokeException */ @Override - public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel) throws ModelInvokeException { + public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel,String itemName, ItemRunStatusEnum itemRunStatusEnum) throws ModelInvokeException { PredictResultVO result = new PredictResultVO(); if (predictModel == null) { throw new ModelInvokeException("modelEntity is null"); } String modelId = predictModel.getId(); - try { List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime); String modelPath = predictModel.getModelpath(); if (modelPath == null) { - System.out.println("模型路径不存在,modelId=" + modelId); + log.info("模型路径不存在,modelId=" + modelId); return null; } IAILModel newModelBean = composeNewModelBean(predictModel); HashMap<String, Object> settings = getPredictSettingsByModelId(modelId); + // 校验setting必须有pyFile,否则可能导致程序崩溃 + if (!settings.containsKey(MdkConstant.PY_FILE_KEY)) { + throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY + "】,请重新上传模型!"); + } + if (settings == null) { log.error("模型setting不存在,modelId=" + modelId); return null; @@ -77,61 +88,65 @@ param2Values[portLength] = newModelBean.getDataMap().get("models"); param2Values[portLength + 1] = settings; - log.info("#######################预测模型 " + predictModel.getItemid() + " ##########################"); - JSONObject jsonObjNewModelBean = new JSONObject(); - jsonObjNewModelBean.put("newModelBean", newModelBean); - log.info(String.valueOf(jsonObjNewModelBean)); - JSONObject jsonObjParam2Values = new JSONObject(); - jsonObjParam2Values.put("param2Values", param2Values); - log.info(String.valueOf(jsonObjParam2Values)); + log.info("####################### 预测模型 "+ "【itemId:" + predictModel.getItemid() + ",itemName" + itemName + "】 ##########################"); +// JSONObject jsonObjNewModelBean = new JSONObject(); +// jsonObjNewModelBean.put("newModelBean", newModelBean); +// log.info(String.valueOf(jsonObjNewModelBean)); +// JSONObject jsonObjParam2Values = new JSONObject(); +// jsonObjParam2Values.put("param2Values", param2Values); + log.info("参数: " + JSON.toJSONString(param2Values)); //IAILMDK.run HashMap<String, Object> modelResult = DllUtils.run(newModelBean, param2Values, predictModel.getMpkprojectid()); if (!modelResult.containsKey(CommonConstant.MDK_STATUS_CODE) || !modelResult.containsKey(CommonConstant.MDK_RESULT) || !modelResult.get(CommonConstant.MDK_STATUS_CODE).toString().equals(CommonConstant.MDK_STATUS_100)) { + itemRunStatusEnum = ItemRunStatusEnum.MODELRESULTERROR; throw new RuntimeException("模型结果异常:" + modelResult); } modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT); //打印结果 + log.info("预测模型计算完成:modelId=" + modelId + ",modelName" + predictModel.getMethodname()); JSONObject jsonObjResult = new JSONObject(); jsonObjResult.put("result", modelResult); log.info(String.valueOf(jsonObjResult)); - List<MmItemOutputEntity> ItemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid()); - log.info("模型计算完成:modelId=" + modelId + modelResult); - - Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(ItemOutputList.size()); - - for (MmItemOutputEntity outputEntity : ItemOutputList) { - String resultStr = outputEntity.getResultstr(); - if (modelResult.containsKey(resultStr)) { - if (outputEntity.getResultType() == 1) { - // 一维数组 - Double[] temp = (Double[]) modelResult.get(resultStr); - double[] temp1 = new double[temp.length]; - for (int i = 0; i < temp.length; i++) { - temp1[i] = temp[i].doubleValue(); + List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid()); + Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(); + Map<MmItemOutputEntity, Double> predictDoubleValues = new HashMap<>(); + for (MmItemOutputEntity output : itemOutputList) { + if (!modelResult.containsKey(output.getResultstr())) { + continue; + } + OutResultType outResultType = OutResultType.getEumByCode(output.getResultType()); + switch (outResultType) { + case D1: + double[] temp1 = (double[]) modelResult.get(output.getResultstr()); + predictMatrixs.put(output, temp1); + break; + case D2: + double[][] temp2 = (double[][]) modelResult.get(output.getResultstr()); + double[] tempColumn = new double[temp2.length]; + for (int i = 0; i < tempColumn.length; i++) { + tempColumn[i] = temp2[i][output.getResultIndex()]; } - predictMatrixs.put(outputEntity, temp1); - } else if (outputEntity.getResultType() == 2) { - // 二维数组 - Double[][] temp = (Double[][]) modelResult.get(resultStr); - Double[] temp2 = temp[outputEntity.getResultIndex()]; - double[] temp1 = new double[temp2.length]; - for (int i = 0; i < temp2.length; i++) { - temp1[i] = temp2[i].doubleValue(); - } - predictMatrixs.put(outputEntity, temp1); - } + predictMatrixs.put(output, tempColumn); + break; + case D: + Double temp3 = (Double) modelResult.get(output.getResultstr()); + predictDoubleValues.put(output, temp3); + break; + default: + break; } } result.setPredictMatrixs(predictMatrixs); + result.setPredictDoubleValues(predictDoubleValues); result.setModelResult(modelResult); result.setPredictTime(predictTime); } catch (Exception ex) { log.error("调用发生异常,异常信息为:{}", ex); - log.error(ex.getMessage()); ex.printStackTrace(); + throw new ModelInvokeException(ex.getMessage()); } return result; } -- Gitblit v1.9.3