From 6c2ff1c7c8e0aba3af92110b76687b78f8278e86 Mon Sep 17 00:00:00 2001
From: 潘志宝 <979469083@qq.com>
Date: 星期五, 03 一月 2025 09:57:37 +0800
Subject: [PATCH] 动态数据长度

---
 iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java |   38 +++++++++++++++++++++++++-------------
 1 files changed, 25 insertions(+), 13 deletions(-)

diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
index 88cefdd..6d1ebbd 100644
--- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
+++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
@@ -1,13 +1,16 @@
 package com.iailab.module.model.mdk.predict.impl;
 
+import com.alibaba.fastjson.JSON;
 import com.alibaba.fastjson.JSONArray;
 import com.alibaba.fastjson.JSONObject;
 import com.iail.model.IAILModel;
 import com.iailab.module.model.common.enums.CommonConstant;
 import com.iailab.module.model.common.enums.OutResultType;
+import com.iailab.module.model.common.exception.ModelResultErrorException;
 import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity;
 import com.iailab.module.model.mcs.pre.entity.MmModelArithSettingsEntity;
 import com.iailab.module.model.mcs.pre.entity.MmPredictModelEntity;
+import com.iailab.module.model.mcs.pre.enums.ItemRunStatusEnum;
 import com.iailab.module.model.mcs.pre.service.MmItemOutputService;
 import com.iailab.module.model.mcs.pre.service.MmModelArithSettingsService;
 import com.iailab.module.model.mdk.common.enums.TypeA;
@@ -54,14 +57,14 @@
      * @throws ModelInvokeException
      */
     @Override
-    public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel) throws ModelInvokeException {
+    public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel,String itemName,String itemNo) throws ModelInvokeException {
         PredictResultVO result = new PredictResultVO();
         if (predictModel == null) {
             throw new ModelInvokeException("modelEntity is null");
         }
         String modelId = predictModel.getId();
         try {
-            List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime);
+            List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime, itemName);
             String modelPath = predictModel.getModelpath();
             if (modelPath == null) {
                 log.info("模型路径不存在,modelId=" + modelId);
@@ -86,29 +89,28 @@
             param2Values[portLength] = newModelBean.getDataMap().get("models");
             param2Values[portLength + 1] = settings;
 
-            log.info("####################### 预测模型 "+ "【itemId:" + predictModel.getItemid() + ",modelName" + predictModel.getMethodname() + "】 ##########################");
+            log.info("####################### 预测模型 "+ "【itemId:" + predictModel.getItemid() + ",itemName:" + itemName + ",itemNo:" + itemNo + "】 ##########################");
 //            JSONObject jsonObjNewModelBean = new JSONObject();
 //            jsonObjNewModelBean.put("newModelBean", newModelBean);
 //            log.info(String.valueOf(jsonObjNewModelBean));
 //            JSONObject jsonObjParam2Values = new JSONObject();
 //            jsonObjParam2Values.put("param2Values", param2Values);
-//            log.info(String.valueOf(jsonObjParam2Values));
+            log.info("参数: " + JSON.toJSONString(param2Values));
 
             //IAILMDK.run
             HashMap<String, Object> modelResult = DllUtils.run(newModelBean, param2Values, predictModel.getMpkprojectid());
+            //打印结果
+            log.info("预测模型计算完成:modelId=" + modelId + ",modelName=" + predictModel.getMethodname() + ",modelResult=" + JSON.toJSONString(modelResult));
+            //判断模型结果
             if (!modelResult.containsKey(CommonConstant.MDK_STATUS_CODE) || !modelResult.containsKey(CommonConstant.MDK_RESULT) ||
                     !modelResult.get(CommonConstant.MDK_STATUS_CODE).toString().equals(CommonConstant.MDK_STATUS_100)) {
-                throw new RuntimeException("模型结果异常:" + modelResult);
+                throw new ModelResultErrorException("模型结果异常:" + modelResult);
             }
             modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT);
-            //打印结果
-            log.info("预测模型计算完成:modelId=" + modelId + ",modelName" + predictModel.getMethodname());
-            JSONObject jsonObjResult = new JSONObject();
-            jsonObjResult.put("result", modelResult);
-            log.info(String.valueOf(jsonObjResult));
 
             List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid());
-            Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(itemOutputList.size());
+            Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>();
+            Map<MmItemOutputEntity, Double> predictDoubleValues = new HashMap<>();
             for (MmItemOutputEntity output : itemOutputList) {
                 if (!modelResult.containsKey(output.getResultstr())) {
                     continue;
@@ -127,16 +129,26 @@
                         }
                         predictMatrixs.put(output, tempColumn);
                         break;
+                    case D:
+                        Double temp3 = (Double) modelResult.get(output.getResultstr());
+                        predictDoubleValues.put(output, temp3);
+                        break;
                     default:
                         break;
                 }
             }
             result.setPredictMatrixs(predictMatrixs);
+            result.setPredictDoubleValues(predictDoubleValues);
             result.setModelResult(modelResult);
             result.setPredictTime(predictTime);
+        } catch (ModelResultErrorException ex) {
+//            ex.printStackTrace();
+            log.error("模型结果异常", ex);
+            throw ex;
         } catch (Exception ex) {
-            log.error("调用发生异常,异常信息为:{}", ex);
-            ex.printStackTrace();
+//            log.error("调用发生异常,异常信息为:{0}", ex.getMessage());
+//            ex.printStackTrace();
+            log.error("模型运行异常", ex);
             throw new ModelInvokeException(ex.getMessage());
         }
         return result;

--
Gitblit v1.9.3