From 5b952f77058a9da5af5e143a6c2c7ba195aa736d Mon Sep 17 00:00:00 2001
From: liriming <1343021927@qq.com>
Date: 星期二, 26 十一月 2024 16:08:10 +0800
Subject: [PATCH] 预测消息配置

---
 iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java |   51 ++++++++++++++++++++++++---------------------------
 1 files changed, 24 insertions(+), 27 deletions(-)

diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
index 3bdf3d4..9d5359b 100644
--- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
+++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictModelHandlerImpl.java
@@ -4,6 +4,7 @@
 import com.alibaba.fastjson.JSONObject;
 import com.iail.model.IAILModel;
 import com.iailab.module.model.common.enums.CommonConstant;
+import com.iailab.module.model.common.enums.OutResultType;
 import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity;
 import com.iailab.module.model.mcs.pre.entity.MmModelArithSettingsEntity;
 import com.iailab.module.model.mcs.pre.entity.MmPredictModelEntity;
@@ -55,12 +56,11 @@
             throw new ModelInvokeException("modelEntity is null");
         }
         String modelId = predictModel.getId();
-
         try {
             List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime);
             String modelPath = predictModel.getModelpath();
             if (modelPath == null) {
-                System.out.println("模型路径不存在,modelId=" + modelId);
+                log.info("模型路径不存在,modelId=" + modelId);
                 return null;
             }
             IAILModel newModelBean = composeNewModelBean(predictModel);
@@ -93,36 +93,33 @@
             }
             modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT);
             //打印结果
+            log.info("模型计算完成:modelId=" + modelId + modelResult);
             JSONObject jsonObjResult = new JSONObject();
             jsonObjResult.put("result", modelResult);
             log.info(String.valueOf(jsonObjResult));
 
-            List<MmItemOutputEntity> ItemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid());
-            log.info("模型计算完成:modelId=" + modelId + modelResult);
-
-            Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(ItemOutputList.size());
-
-            for (MmItemOutputEntity outputEntity : ItemOutputList) {
-                String resultStr = outputEntity.getResultstr();
-                if (modelResult.containsKey(resultStr)) {
-                    if (outputEntity.getResultType() == 1) {
-                        // 一维数组
-                        Double[] temp = (Double[]) modelResult.get(resultStr);
-                        double[] temp1 = new double[temp.length];
-                        for (int i = 0; i < temp.length; i++) {
-                            temp1[i] = temp[i].doubleValue();
+            List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid());
+            Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(itemOutputList.size());
+            for (MmItemOutputEntity output : itemOutputList) {
+                if (!modelResult.containsKey(output.getResultstr())) {
+                    continue;
+                }
+                OutResultType outResultType = OutResultType.getEumByCode(output.getResultType());
+                switch (outResultType) {
+                    case D1:
+                        double[] temp1 = (double[]) modelResult.get(output.getResultstr());
+                        predictMatrixs.put(output, temp1);
+                        break;
+                    case D2:
+                        double[][] temp2 = (double[][]) modelResult.get(output.getResultstr());
+                        double[] tempColumn = new double[temp2.length];
+                        for (int i = 0; i < tempColumn.length; i++) {
+                            tempColumn[i] = temp2[i][output.getResultIndex()];
                         }
-                        predictMatrixs.put(outputEntity, temp1);
-                    } else if (outputEntity.getResultType() == 2) {
-                        // 二维数组
-                        Double[][] temp = (Double[][]) modelResult.get(resultStr);
-                        Double[] temp2 = temp[outputEntity.getResultIndex()];
-                        double[] temp1 = new double[temp2.length];
-                        for (int i = 0; i < temp2.length; i++) {
-                            temp1[i] = temp2[i].doubleValue();
-                        }
-                        predictMatrixs.put(outputEntity, temp1);
-                    }
+                        predictMatrixs.put(output, tempColumn);
+                        break;
+                    default:
+                        break;
                 }
             }
             result.setPredictMatrixs(predictMatrixs);

--
Gitblit v1.9.3