From 2b47c5b0e504a653fe40ae8b6749e14e228a89bd Mon Sep 17 00:00:00 2001 From: dongyukun <1208714201@qq.com> Date: 星期四, 02 一月 2025 13:46:57 +0800 Subject: [PATCH] 调度模型下发 --- iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/sample/PredictSampleDataConstructor.java | 127 +++++++++++++++++++++++++++++------------- 1 files changed, 87 insertions(+), 40 deletions(-) diff --git a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/sample/PredictSampleDataConstructor.java b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/sample/PredictSampleDataConstructor.java index c9a6afa..e4539bf 100644 --- a/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/sample/PredictSampleDataConstructor.java +++ b/iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/sample/PredictSampleDataConstructor.java @@ -1,29 +1,40 @@ package com.iailab.module.model.mdk.sample; -import com.iailab.framework.common.util.object.ConvertUtils; +import com.iailab.module.data.api.plan.PlanItemApi; +import com.iailab.module.data.api.plan.dto.ApiPlanItemDTO; import com.iailab.module.data.api.point.DataPointApi; import com.iailab.module.data.api.point.dto.ApiPointDTO; import com.iailab.module.data.api.point.dto.ApiPointValueDTO; import com.iailab.module.data.api.point.dto.ApiPointValueQueryDTO; +import com.iailab.module.data.common.ApiDataQueryDTO; +import com.iailab.module.data.common.ApiDataValueDTO; +import com.iailab.module.model.common.enums.OutResultType; +import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity; +import com.iailab.module.model.mcs.pre.service.MmItemOutputService; +import com.iailab.module.model.mcs.pre.service.MmItemResultJsonService; import com.iailab.module.model.mcs.pre.service.MmItemResultService; -import com.iailab.module.model.mdk.factory.ItemEntityFactory; +import com.iailab.module.model.mcs.pre.service.MmItemTypeService; +import com.iailab.module.model.mdk.common.enums.ModelParamType; import com.iailab.module.model.mdk.sample.dto.ColumnItem; import com.iailab.module.model.mdk.sample.dto.ColumnItemPort; import com.iailab.module.model.mdk.sample.dto.SampleData; import com.iailab.module.model.mdk.sample.dto.SampleInfo; import com.iailab.module.model.mdk.vo.DataValueVO; -import com.iailab.module.model.mdk.vo.MmItemOutputVO; +import lombok.extern.slf4j.Slf4j; +import org.apache.commons.lang3.StringUtils; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; +import org.springframework.util.CollectionUtils; -import java.math.BigDecimal; import java.util.*; +import java.util.stream.Collectors; /** * 预测样本数据构造 */ +@Slf4j @Component public class PredictSampleDataConstructor extends SampleDataConstructor { @@ -33,10 +44,19 @@ private DataPointApi dataPointApi; @Autowired + private PlanItemApi planItemApi; + + @Autowired private MmItemResultService mmItemResultService; @Autowired - private ItemEntityFactory itemEntityFactory; + private MmItemResultJsonService mmItemResultJsonService; + + @Autowired + private MmItemTypeService mmItemTypeService; + + @Autowired + private MmItemOutputService mmItemOutputService; /** * alter by zfc 2020.11.24 修改数据样本构造方案:sampleInfo中数据已按爪子进行分类,但爪内数据为无序的, @@ -46,10 +66,11 @@ * @return */ @Override - public List<SampleData> prepareSampleData(SampleInfo sampleInfo) { + public List<SampleData> prepareSampleData(SampleInfo sampleInfo) throws Exception { List<SampleData> sampleDataList = new ArrayList<>(); + Map<String, ApiPointDTO> pointMap = sampleInfo.getPointMap(); + Map<String, ApiPlanItemDTO> planMap = sampleInfo.getPlanMap(); //对每个爪分别进行计算 - int deviationIndex = 0; for (ColumnItemPort entry : sampleInfo.getColumnInfo()) { //先依据爪内数据项的modelParamOrder进行排序——重写comparator匿名函数 Collections.sort(entry.getColumnItemList(), new Comparator<ColumnItem>() { @@ -67,31 +88,14 @@ } } - //找出对应的调整值 - BigDecimal[] deviationItem = null; - if (sampleInfo.getDeviation() != null && sampleInfo.getDeviation().length > 0) { - deviationItem = sampleInfo.getDeviation()[deviationIndex]; - } - deviationIndex++; - //对每一项依次进行数据查询,然后将查询出的值赋给matrix对应的位置 for (int i = 0; i < entry.getColumnItemList().size(); i++) { try { - List<DataValueVO> dataEntityList = getData(entry.getColumnItemList().get(i)); - //设置调整值 - if (deviationItem != null && deviationItem.length > 0) { - logger.info("设置调整值, i = " + i); - if (deviationItem[i] != null && deviationItem[i].compareTo(BigDecimal.ZERO) != 0) { - for (int dataKey = 1; dataKey < dataEntityList.size(); dataKey++) { - DataValueVO item = dataEntityList.get(dataKey); - item.setDataValue(item.getDataValue() + deviationItem[i].doubleValue()); - } - } - } + List<DataValueVO> dataEntityList = getData(entry.getColumnItemList().get(i),pointMap,planMap); //补全数据 ColumnItem columnItem = entry.getColumnItemList().get(i); -// dataEntityList = super.completionData(matrix.length, dataEntityList, columnItem.startTime, columnItem.getEndTime(), columnItem.granularity); - dataEntityList = super.completionData(matrix.length, dataEntityList, columnItem.startTime, columnItem.endTime, columnItem.paramId,columnItem.getParamType()); + dataEntityList = super.completionData(matrix.length, dataEntityList, columnItem.startTime, columnItem.endTime, + columnItem.paramId, columnItem.getParamType(),pointMap,planMap); /** 如果数据取不满,把缺失的数据点放在后面 */ if (dataEntityList != null && dataEntityList.size() != 0) { @@ -102,6 +106,7 @@ } } catch (Exception e) { e.printStackTrace(); + throw e; } } SampleData sampleData = new SampleData(); @@ -115,35 +120,77 @@ * getData * * @param columnItem + * @param pointMap + * @param planMap * @return * @throws Exception */ - private List<DataValueVO> getData(ColumnItem columnItem) throws Exception { + private List<DataValueVO> getData(ColumnItem columnItem, Map<String, ApiPointDTO> pointMap, Map<String, ApiPlanItemDTO> planMap) throws Exception { List<DataValueVO> dataList = new ArrayList<>(); String paramType = columnItem.getParamType(); - switch (paramType) { - case "DATAPOINT": - ApiPointDTO point = dataPointApi.getInfoById(columnItem.getParamId()); + switch (ModelParamType.getEumByCode(paramType)) { + case DATAPOINT: ApiPointValueQueryDTO queryDto = new ApiPointValueQueryDTO(); - queryDto.setPointNo(point.getPointNo()); + queryDto.setPointNo(pointMap.get(columnItem.getParamId()).getPointNo()); queryDto.setStart(columnItem.getStartTime()); queryDto.setEnd(columnItem.getEndTime()); List<ApiPointValueDTO> pointValueList = dataPointApi.queryPointHistoryValue(queryDto); - dataList = ConvertUtils.sourceToTarget(pointValueList, DataValueVO.class); - break; - case "PREDICTITEM": - MmItemOutputVO outPut = itemEntityFactory.getItemOutPutById(columnItem.getId()); - dataList = mmItemResultService.getPredictValue(outPut.getId(), - columnItem.getStartTime(), columnItem.getEndTime()); - if (dataList == null) { - throw new Exception("没有预测值"); + if (CollectionUtils.isEmpty(pointValueList)) { + break; } + dataList = pointValueList.stream().map(t -> { + DataValueVO vo = new DataValueVO(); + vo.setDataTime(t.getT()); + vo.setDataValue(t.getV()); + return vo; + }).collect(Collectors.toList()); break; + case NORMALITEM: + case MERGEITEM: + MmItemOutputEntity outPut = mmItemOutputService.getOutPutById(columnItem.getParamId()); + OutResultType outResultType = OutResultType.getEumByCode(outPut.getResultType()); + List<DataValueVO> predictValue = new ArrayList<>(); + // double类型特殊处理 + if (OutResultType.D.equals(outResultType)) { + // columnItem.getStartTime()就是预测时间 + String doubleData = mmItemResultJsonService.getDoubleData(outPut.getId(), columnItem.getStartTime()); + if (StringUtils.isNotBlank(doubleData)) { + DataValueVO dataValueVO = new DataValueVO(); + dataValueVO.setDataTime(columnItem.getStartTime()); + dataValueVO.setDataValue(Double.valueOf(doubleData)); + predictValue.add(dataValueVO); + } + } else { + predictValue = mmItemResultService.getPredictValue(outPut.getId(), columnItem.getStartTime(), columnItem.getEndTime()); + } + if (CollectionUtils.isEmpty(predictValue)) { + break; + } + dataList = predictValue; + break; + case PLAN: + ApiDataQueryDTO queryPlanItemDto = new ApiDataQueryDTO(); + queryPlanItemDto.setItemNo(planMap.get(columnItem.getParamId()).getItemNo()); + queryPlanItemDto.setStart(columnItem.getStartTime()); + queryPlanItemDto.setEnd(columnItem.getEndTime()); + List<ApiDataValueDTO> planValueList = planItemApi.queryPlanItemHistoryValue(queryPlanItemDto); + if (CollectionUtils.isEmpty(planValueList)) { + break; + } + dataList = planValueList.stream().map(t -> { + DataValueVO vo = new DataValueVO(); + vo.setDataTime(t.getDataTime()); + vo.setDataValue(t.getDataValue()); + return vo; + }).collect(Collectors.toList()); default: break; } + // 避免生产环境日志过多,分级打印 + log.debug("数据获取,columnItem:" + columnItem + ",dataList:" + dataList); + log.info("数据获取,columnItem:" + columnItem + ",dataListLength:" + dataList.size()); return dataList; } } -- Gitblit v1.9.3