潘志宝
2024-11-22 a4fdfbab40e2543931685ec9073466d300848b2c
运行耗时(ms)
已修改3个文件
26 ■■■■■ 文件已修改
iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/api/MdkApiImpl.java 2 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/common/enums/CommonConstant.java 10 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/PredictModuleHandler.java 14 ●●●● 补丁 | 查看 | 原始文档 | blame | 历史
iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/api/MdkApiImpl.java
@@ -100,11 +100,9 @@
                Map<String, PredictResultVO> predictResultMap = predictModuleHandler.predict(predictItemList, reqDTO.getPredictTime(), intervalTime);
                // 更新Module时间
                dmModuleService.updatePredictTime(module.getId(), reqDTO.getPredictTime());
                if (reqDTO.getIsResult() == null || !reqDTO.getIsResult()) {
                    return resp;
                }
                for (Map.Entry<String, PredictResultVO> entry : predictResultMap.entrySet()) {
                    MdkPredictItemRespDTO itemResp = new MdkPredictItemRespDTO();
                    itemResp.setItemId(entry.getKey());
iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/common/enums/CommonConstant.java
@@ -22,7 +22,6 @@
    String MDK_STATUS_100 = "100";
    String RANGE_H = "RANGE_H";
    String RANGE_L = "RANGE_L";
@@ -43,4 +42,13 @@
    // 趋势预测曲线类型,0:展示T+N,1:展示T+L,
    String LINE_TYPE = "LINE_TYPE";
    // 模型输出预测值
    String OUT_PREDICT_VALUES = "predictValues";
    // 模型输出优化值
    String OUT_OPT_VALUES = "optValues";
    // 模型输出调整值
    String OUT_ADJUST_VALUES = "adjustValues";
}
iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/PredictModuleHandler.java
@@ -58,7 +58,7 @@
            try {
                mmItemStatusService.recordStatus(predictItem.getId(), ItemRunStatusEnum.PROCESSING, totalDur, predictTime);
                PredictItemHandler predictItemHandler = predictItemFactory.create(predictItem.getId());
                Instant start = Instant.now();
                long start = System.currentTimeMillis();
                try {
                    // 预测项开始预测
                    predictResult = predictItemHandler.predict(predictTime, predictItem);
@@ -68,9 +68,9 @@
                    mmItemStatusService.recordStatus(predictItem.getId(), ItemRunStatusEnum.FAIL, totalDur, predictTime);
                    continue;
                }
                Instant end = Instant.now();
                Long drtPre = Duration.between(start, end).getSeconds();
                log.info(MessageFormat.format("预测项:{0},预测时间:{1}秒", predictItem.getItemName(), drtPre));
                long end = System.currentTimeMillis();
                Long drtPre = end - start;
                log.info(MessageFormat.format("预测项:{0},预测时间:{1}ms", predictItem.getItemName(), drtPre));
                totalDur = totalDur + drtPre;
                predictResult.setGranularity(predictItem.getGranularity());
@@ -80,9 +80,9 @@
                // 保存预测结果
                predictResultHandler.savePredictResult(predictResult);
                Instant endSave = Instant.now();
                Long drtSave = Duration.between(end, endSave).getSeconds();
                log.info(MessageFormat.format("预测项:{0},保存时间:{1}秒", predictItem.getItemName(),
                long endSave = System.currentTimeMillis();
                Long drtSave = endSave - end;
                log.info(MessageFormat.format("预测项:{0},保存时间:{1}ms", predictItem.getItemName(),
                        drtSave));
                totalDur = totalDur + drtSave;
                mmItemStatusService.recordStatus(predictItem.getId(), ItemRunStatusEnum.SUCCESS, totalDur, predictTime);