| | |
| | | package com.iailab.module.model.mdk.sample; |
| | | |
| | | import com.iailab.framework.common.util.object.ConvertUtils; |
| | | import com.iailab.module.data.api.point.DataPointApi; |
| | | import com.iailab.module.data.api.point.dto.ApiPointDTO; |
| | | import com.iailab.module.data.api.point.dto.ApiPointValueDTO; |
| | | import com.iailab.module.data.api.point.dto.ApiPointValueQueryDTO; |
| | | import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity; |
| | | import com.iailab.module.model.mcs.pre.service.MmItemOutputService; |
| | | import com.iailab.module.model.mcs.pre.service.MmItemResultService; |
| | | import com.iailab.module.model.mdk.factory.ItemEntityFactory; |
| | | import com.iailab.module.model.mcs.pre.service.MmItemTypeService; |
| | | import com.iailab.module.model.mdk.common.enums.ModelParamType; |
| | | import com.iailab.module.model.mdk.sample.dto.ColumnItem; |
| | | import com.iailab.module.model.mdk.sample.dto.ColumnItemPort; |
| | | import com.iailab.module.model.mdk.sample.dto.SampleData; |
| | | import com.iailab.module.model.mdk.sample.dto.SampleInfo; |
| | | import com.iailab.module.model.mdk.vo.DataValueVO; |
| | | import com.iailab.module.model.mdk.vo.MmItemOutputVO; |
| | | import org.slf4j.Logger; |
| | | import org.slf4j.LoggerFactory; |
| | | import org.springframework.beans.factory.annotation.Autowired; |
| | |
| | | |
| | | import java.math.BigDecimal; |
| | | import java.util.*; |
| | | import java.util.stream.Collectors; |
| | | |
| | | /** |
| | | * 预测样本数据构造 |
| | |
| | | private MmItemResultService mmItemResultService; |
| | | |
| | | @Autowired |
| | | private ItemEntityFactory itemEntityFactory; |
| | | private MmItemTypeService mmItemTypeService; |
| | | |
| | | @Autowired |
| | | private MmItemOutputService mmItemOutputService; |
| | | |
| | | /** |
| | | * alter by zfc 2020.11.24 修改数据样本构造方案:sampleInfo中数据已按爪子进行分类,但爪内数据为无序的, |
| | |
| | | public List<SampleData> prepareSampleData(SampleInfo sampleInfo) { |
| | | List<SampleData> sampleDataList = new ArrayList<>(); |
| | | //对每个爪分别进行计算 |
| | | int deviationIndex = 0; |
| | | for (ColumnItemPort entry : sampleInfo.getColumnInfo()) { |
| | | //先依据爪内数据项的modelParamOrder进行排序——重写comparator匿名函数 |
| | | Collections.sort(entry.getColumnItemList(), new Comparator<ColumnItem>() { |
| | |
| | | } |
| | | } |
| | | |
| | | //找出对应的调整值 |
| | | BigDecimal[] deviationItem = null; |
| | | if (sampleInfo.getDeviation() != null && sampleInfo.getDeviation().length > 0) { |
| | | deviationItem = sampleInfo.getDeviation()[deviationIndex]; |
| | | } |
| | | deviationIndex++; |
| | | |
| | | //对每一项依次进行数据查询,然后将查询出的值赋给matrix对应的位置 |
| | | for (int i = 0; i < entry.getColumnItemList().size(); i++) { |
| | | try { |
| | | List<DataValueVO> dataEntityList = getData(entry.getColumnItemList().get(i)); |
| | | //设置调整值 |
| | | if (deviationItem != null && deviationItem.length > 0) { |
| | | logger.info("设置调整值, i = " + i); |
| | | if (deviationItem[i] != null && deviationItem[i].compareTo(BigDecimal.ZERO) != 0) { |
| | | for (int dataKey = 1; dataKey < dataEntityList.size(); dataKey++) { |
| | | DataValueVO item = dataEntityList.get(dataKey); |
| | | item.setDataValue(item.getDataValue() + deviationItem[i].doubleValue()); |
| | | } |
| | | } |
| | | } |
| | | //补全数据 |
| | | ColumnItem columnItem = entry.getColumnItemList().get(i); |
| | | dataEntityList = super.completionData(matrix.length, dataEntityList, columnItem.startTime, columnItem.getEndTime(), columnItem.granularity); |
| | | dataEntityList = super.completionData(matrix.length, dataEntityList, columnItem.startTime, columnItem.endTime, |
| | | columnItem.paramId, columnItem.getParamType()); |
| | | |
| | | /** 如果数据取不满,把缺失的数据点放在后面 */ |
| | | if (dataEntityList != null && dataEntityList.size() != 0) { |
| | |
| | | private List<DataValueVO> getData(ColumnItem columnItem) throws Exception { |
| | | List<DataValueVO> dataList = new ArrayList<>(); |
| | | String paramType = columnItem.getParamType(); |
| | | switch (paramType) { |
| | | case "DATAPOINT": |
| | | ApiPointDTO point = dataPointApi.getInfoById(columnItem.getId()); |
| | | switch (ModelParamType.getEumByCode(paramType)) { |
| | | case DATAPOINT: |
| | | ApiPointDTO point = dataPointApi.getInfoById(columnItem.getParamId()); |
| | | ApiPointValueQueryDTO queryDto = new ApiPointValueQueryDTO(); |
| | | queryDto.setPointNo(point.getPointNo()); |
| | | queryDto.setStart(columnItem.getStartTime()); |
| | | queryDto.setEnd(columnItem.getEndTime()); |
| | | List<ApiPointValueDTO> pointValueList = dataPointApi.queryPointHistoryValue(queryDto); |
| | | dataList = ConvertUtils.sourceToTarget(pointValueList, DataValueVO.class); |
| | | dataList = pointValueList.stream().map(t -> { |
| | | DataValueVO vo = new DataValueVO(); |
| | | vo.setDataTime(t.getT()); |
| | | vo.setDataValue(t.getV()); |
| | | return vo; |
| | | }).collect(Collectors.toList()); |
| | | break; |
| | | case "PREDICTITEM": |
| | | MmItemOutputVO outPut = itemEntityFactory.getItemOutPutById(columnItem.getId()); |
| | | case NORMALITEM: |
| | | case MERGEITEM: |
| | | MmItemOutputEntity outPut = mmItemOutputService.getOutPutById(columnItem.getParamId()); |
| | | dataList = mmItemResultService.getPredictValue(outPut.getId(), |
| | | columnItem.getStartTime(), columnItem.getEndTime()); |
| | | if (dataList == null) { |
| | | throw new Exception("没有预测值"); |
| | | } |
| | | break; |
| | | |
| | | |
| | | default: |
| | | break; |
| | | } |