| | |
| | | import com.alibaba.fastjson.JSONObject; |
| | | import com.iail.model.IAILModel; |
| | | import com.iailab.module.model.common.enums.CommonConstant; |
| | | import com.iailab.module.model.common.enums.OutResultType; |
| | | import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity; |
| | | import com.iailab.module.model.mcs.pre.entity.MmModelArithSettingsEntity; |
| | | import com.iailab.module.model.mcs.pre.entity.MmPredictModelEntity; |
| | |
| | | import com.iailab.module.model.mdk.sample.SampleConstructor; |
| | | import com.iailab.module.model.mdk.sample.dto.SampleData; |
| | | import com.iailab.module.model.mdk.vo.PredictResultVO; |
| | | import com.iailab.module.model.mpk.common.MdkConstant; |
| | | import com.iailab.module.model.mpk.common.utils.DllUtils; |
| | | import lombok.extern.slf4j.Slf4j; |
| | | import org.springframework.beans.factory.annotation.Autowired; |
| | | import org.springframework.stereotype.Component; |
| | | |
| | | import java.util.*; |
| | | import java.util.Date; |
| | | import java.util.HashMap; |
| | | import java.util.List; |
| | | import java.util.Map; |
| | | |
| | | /** |
| | | * @author PanZhibao |
| | |
| | | throw new ModelInvokeException("modelEntity is null"); |
| | | } |
| | | String modelId = predictModel.getId(); |
| | | |
| | | try { |
| | | List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime); |
| | | String modelPath = predictModel.getModelpath(); |
| | | if (modelPath == null) { |
| | | System.out.println("模型路径不存在,modelId=" + modelId); |
| | | log.info("模型路径不存在,modelId=" + modelId); |
| | | return null; |
| | | } |
| | | IAILModel newModelBean = composeNewModelBean(predictModel); |
| | | HashMap<String, Object> settings = getPredictSettingsByModelId(modelId); |
| | | // 校验setting必须有pyFile,否则可能导致程序崩溃 |
| | | if (!settings.containsKey(MdkConstant.PY_FILE_KEY)) { |
| | | throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY + "】,请重新上传模型!"); |
| | | } |
| | | |
| | | if (settings == null) { |
| | | log.error("模型setting不存在,modelId=" + modelId); |
| | | return null; |
| | |
| | | } |
| | | modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT); |
| | | //打印结果 |
| | | log.info("预测模型计算完成:modelId=" + modelId + modelResult); |
| | | JSONObject jsonObjResult = new JSONObject(); |
| | | jsonObjResult.put("result", modelResult); |
| | | log.info(String.valueOf(jsonObjResult)); |
| | | |
| | | List<MmItemOutputEntity> ItemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid()); |
| | | log.info("模型计算完成:modelId=" + modelId + modelResult); |
| | | |
| | | Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(ItemOutputList.size()); |
| | | |
| | | for (MmItemOutputEntity outputEntity : ItemOutputList) { |
| | | String resultStr = outputEntity.getResultstr(); |
| | | if (modelResult.containsKey(resultStr)) { |
| | | if (outputEntity.getResultType() == 1) { |
| | | // 一维数组 |
| | | Double[] temp = (Double[]) modelResult.get(resultStr); |
| | | double[] temp1 = new double[temp.length]; |
| | | for (int i = 0; i < temp.length; i++) { |
| | | temp1[i] = temp[i].doubleValue(); |
| | | List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid()); |
| | | Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(itemOutputList.size()); |
| | | for (MmItemOutputEntity output : itemOutputList) { |
| | | if (!modelResult.containsKey(output.getResultstr())) { |
| | | continue; |
| | | } |
| | | OutResultType outResultType = OutResultType.getEumByCode(output.getResultType()); |
| | | switch (outResultType) { |
| | | case D1: |
| | | double[] temp1 = (double[]) modelResult.get(output.getResultstr()); |
| | | predictMatrixs.put(output, temp1); |
| | | break; |
| | | case D2: |
| | | double[][] temp2 = (double[][]) modelResult.get(output.getResultstr()); |
| | | double[] tempColumn = new double[temp2.length]; |
| | | for (int i = 0; i < tempColumn.length; i++) { |
| | | tempColumn[i] = temp2[i][output.getResultIndex()]; |
| | | } |
| | | predictMatrixs.put(outputEntity, temp1); |
| | | } else if (outputEntity.getResultType() == 2) { |
| | | // 二维数组 |
| | | Double[][] temp = (Double[][]) modelResult.get(resultStr); |
| | | Double[] temp2 = temp[outputEntity.getResultIndex()]; |
| | | double[] temp1 = new double[temp2.length]; |
| | | for (int i = 0; i < temp2.length; i++) { |
| | | temp1[i] = temp2[i].doubleValue(); |
| | | } |
| | | predictMatrixs.put(outputEntity, temp1); |
| | | } |
| | | predictMatrixs.put(output, tempColumn); |
| | | break; |
| | | default: |
| | | break; |
| | | } |
| | | } |
| | | result.setPredictMatrixs(predictMatrixs); |