| | |
| | | } |
| | | |
| | | /** |
| | | * 预测,模拟调整 |
| | | * |
| | | * @param predictTime |
| | | * @param predictModel |
| | | * @param itemName |
| | | * @param itemNo |
| | | * @return |
| | | * @throws ModelInvokeException |
| | | */ |
| | | @Override |
| | | public synchronized PredictResultVO predictByModel(Date predictTime, MmPredictModelEntity predictModel,String itemName,String itemNo, double[][] deviation) throws ModelInvokeException { |
| | | PredictResultVO result = new PredictResultVO(); |
| | | if (predictModel == null) { |
| | | throw new ModelInvokeException("modelEntity is null"); |
| | | } |
| | | String modelId = predictModel.getId(); |
| | | try { |
| | | List<SampleData> sampleDataList = sampleConstructor.constructSample(TypeA.Predict.name(), modelId, predictTime, itemName, new HashMap<>()); |
| | | String modelPath = predictModel.getModelpath(); |
| | | if (modelPath == null) { |
| | | log.info("模型路径不存在,modelId=" + modelId); |
| | | return null; |
| | | } |
| | | IAILModel newModelBean = composeNewModelBean(predictModel); |
| | | HashMap<String, Object> settings = getPredictSettingsByModelId(modelId); |
| | | // 校验setting必须有pyFile,否则可能导致程序崩溃 |
| | | if (!settings.containsKey(MdkConstant.PY_FILE_KEY)) { |
| | | throw new RuntimeException("模型设置参数缺少必要信息【" + MdkConstant.PY_FILE_KEY + "】,请重新上传模型!"); |
| | | } |
| | | |
| | | if (settings == null) { |
| | | log.error("模型setting不存在,modelId=" + modelId); |
| | | return null; |
| | | } |
| | | int portLength = sampleDataList.size(); |
| | | Object[] param2Values = new Object[portLength + 2]; |
| | | for (int i = 0; i < portLength; i++) { |
| | | param2Values[i] = sampleDataList.get(i).getMatrix(); |
| | | } |
| | | param2Values[portLength] = newModelBean.getDataMap().get("models"); |
| | | param2Values[portLength + 1] = settings; |
| | | |
| | | log.info("####################### 模拟调整 "+ "【itemId:" + predictModel.getItemid() + ",itemName:" + itemName + ",itemNo:" + itemNo + "】 ##########################"); |
| | | log.info("参数: " + JSON.toJSONString(param2Values)); |
| | | |
| | | //IAILMDK.run |
| | | HashMap<String, Object> modelResult = DllUtils.run(newModelBean, param2Values, predictModel.getMpkprojectid()); |
| | | //打印结果 |
| | | log.info("预测模型计算完成:modelId=" + modelId + ",modelName=" + predictModel.getMethodname() + ",modelResult=" + JSON.toJSONString(modelResult)); |
| | | //判断模型结果 |
| | | if (!modelResult.containsKey(CommonConstant.MDK_STATUS_CODE) || !modelResult.containsKey(CommonConstant.MDK_RESULT) || |
| | | !modelResult.get(CommonConstant.MDK_STATUS_CODE).toString().equals(CommonConstant.MDK_STATUS_100)) { |
| | | throw new ModelResultErrorException("模型结果异常:" + modelResult); |
| | | } |
| | | modelResult = (HashMap<String, Object>) modelResult.get(CommonConstant.MDK_RESULT); |
| | | |
| | | List<MmItemOutputEntity> itemOutputList = mmItemOutputService.getByItemid(predictModel.getItemid()); |
| | | Map<MmItemOutputEntity, double[]> predictMatrixs = new HashMap<>(); |
| | | for (MmItemOutputEntity output : itemOutputList) { |
| | | if (!modelResult.containsKey(output.getResultstr())) { |
| | | continue; |
| | | } |
| | | OutResultType outResultType = OutResultType.getEumByCode(output.getResultType()); |
| | | switch (outResultType) { |
| | | case D1: |
| | | double[] temp1 = (double[]) modelResult.get(output.getResultstr()); |
| | | predictMatrixs.put(output, temp1); |
| | | break; |
| | | case D2: |
| | | double[][] temp2 = (double[][]) modelResult.get(output.getResultstr()); |
| | | double[] tempColumn = new double[temp2.length]; |
| | | for (int i = 0; i < tempColumn.length; i++) { |
| | | tempColumn[i] = temp2[i][output.getResultIndex()]; |
| | | } |
| | | predictMatrixs.put(output, tempColumn); |
| | | break; |
| | | case D: |
| | | Double temp3 = (Double) modelResult.get(output.getResultstr()); |
| | | predictMatrixs.put(output, new double[]{temp3}); |
| | | break; |
| | | default: |
| | | break; |
| | | } |
| | | } |
| | | result.setPredictMatrixs(predictMatrixs); |
| | | result.setModelResult(modelResult); |
| | | result.setPredictTime(predictTime); |
| | | } catch (ModelResultErrorException ex) { |
| | | log.error("模型结果异常", ex); |
| | | throw ex; |
| | | } catch (Exception ex) { |
| | | log.error("调用发生异常,异常信息为:{0}", ex.getMessage()); |
| | | throw new ModelInvokeException(ex.getMessage()); |
| | | } |
| | | return result; |
| | | } |
| | | /** |
| | | * 构造IAILMDK.run()方法的newModelBean参数 |
| | | * |
| | | * @param predictModel |