| | |
| | | package com.iailab.module.model.api; |
| | | |
| | | import com.alibaba.fastjson.JSON; |
| | | import com.iailab.framework.common.util.object.ConvertUtils; |
| | | import com.iailab.module.data.api.point.DataPointApi; |
| | | import com.iailab.module.data.api.point.dto.ApiPointValueWriteDTO; |
| | | import com.iailab.module.model.api.mcs.dto.StScheduleModelOutDTO; |
| | | import com.iailab.module.model.api.mdk.MdkApi; |
| | | import com.iailab.module.model.api.mdk.dto.*; |
| | | import com.iailab.module.model.mcs.pre.entity.DmModuleEntity; |
| | | import com.iailab.module.model.mcs.pre.service.DmModuleService; |
| | | import com.iailab.module.model.mcs.pre.service.MmPredictItemService; |
| | | import com.iailab.module.model.mdk.factory.ItemEntityFactory; |
| | | import com.iailab.module.model.mdk.factory.PredictItemFactory; |
| | | import com.iailab.module.model.mdk.predict.PredictItemHandler; |
| | | import com.iailab.module.model.mcs.sche.service.StScheduleModelOutService; |
| | | import com.iailab.module.model.mcs.sche.service.StScheduleRecordService; |
| | | import com.iailab.module.model.mcs.sche.service.StScheduleSchemeService; |
| | | import com.iailab.module.model.mdk.predict.PredictModuleHandler; |
| | | import com.iailab.module.model.mdk.predict.PredictResultHandler; |
| | | import com.iailab.module.model.mdk.schedule.ScheduleModelHandler; |
| | |
| | | |
| | | import java.util.*; |
| | | import java.util.stream.Collectors; |
| | | |
| | | import static com.iailab.framework.common.pojo.CommonResult.error; |
| | | import static com.iailab.framework.common.pojo.CommonResult.success; |
| | | |
| | | /** |
| | | * @author PanZhibao |
| | |
| | | private PredictModuleHandler predictModuleHandler; |
| | | |
| | | @Autowired |
| | | private ItemEntityFactory itemEntityFactory; |
| | | |
| | | @Autowired |
| | | private PredictItemFactory predictItemFactory; |
| | | |
| | | @Autowired |
| | | private PredictResultHandler predictResultHandler; |
| | | |
| | | @Autowired |
| | | private ScheduleModelHandler scheduleModelHandler; |
| | | |
| | | @Autowired |
| | | private StScheduleRecordService stScheduleRecordService; |
| | | |
| | | @Autowired |
| | | private StScheduleSchemeService stScheduleSchemeService; |
| | | |
| | | @Autowired |
| | | private StScheduleModelOutService stScheduleModelOutService; |
| | | |
| | | @Autowired |
| | | private DataPointApi dataPointApi; |
| | | |
| | | /** |
| | | * 按模块预测 |
| | |
| | | intervalTime = (int) (reqDTO.getPredictTime().getTime() - module.getPredicttime().getTime()) / (1000 * 60); |
| | | } |
| | | List<ItemVO> predictItemList = mmPredictItemService.getByModuleId(module.getId()); |
| | | Map<String, PredictResultVO> predictResultMap = predictModuleHandler.predict(predictItemList, reqDTO.getPredictTime(), intervalTime); |
| | | Map<String, PredictResultVO> predictResultMap = new HashMap<>(predictItemList.size()); |
| | | // 分组,先运行normal预测项,再将结果传递给merge预测项 |
| | | List<ItemVO> normalItems = predictItemList.stream().filter(e -> e.getItemType().equals("NormalItem")).collect(Collectors.toList()); |
| | | if (!CollectionUtils.isEmpty(normalItems)) { |
| | | predictModuleHandler.predict(normalItems, reqDTO.getPredictTime(), intervalTime, predictResultMap); |
| | | List<ItemVO> mergeItems = predictItemList.stream().filter(e -> e.getItemType().equals("MergeItem")).collect(Collectors.toList()); |
| | | if (!CollectionUtils.isEmpty(mergeItems)) { |
| | | predictModuleHandler.predict(mergeItems, reqDTO.getPredictTime(), intervalTime, predictResultMap); |
| | | } |
| | | } |
| | | // 更新Module时间 |
| | | dmModuleService.updatePredictTime(module.getId(), reqDTO.getPredictTime()); |
| | | if (reqDTO.getIsResult() == null || !reqDTO.getIsResult()) { |
| | |
| | | @Override |
| | | public MdkPredictItemRespDTO predictItem(MdkPredictReqDTO reqDTO) { |
| | | MdkPredictItemRespDTO resp = new MdkPredictItemRespDTO(); |
| | | |
| | | try { |
| | | log.info("预测计算开始: " + System.currentTimeMillis()); |
| | | Map<String, List<MdkPredictDataDTO>> predictData = new HashMap<>(); |
| | | ItemVO predictItem = itemEntityFactory.getItemByItemNo(reqDTO.getItemNo()); |
| | | PredictItemHandler predictItemHandler = predictItemFactory.create(predictItem.getId()); |
| | | PredictResultVO predictResult = predictItemHandler.predict(reqDTO.getPredictTime(), predictItem); |
| | | Map<String, List<DataValueVO>> resultMap = predictResultHandler.convertToPredictData(predictResult); |
| | | if (!CollectionUtils.isEmpty(resultMap)) { |
| | | for (Map.Entry<String, List<DataValueVO>> entry : resultMap.entrySet()) { |
| | | List<MdkPredictDataDTO> data = ConvertUtils.sourceToTarget(entry.getValue(), MdkPredictDataDTO.class); |
| | | predictData.put(entry.getKey(), data); |
| | | } |
| | | |
| | | ItemVO itemByItemNo = mmPredictItemService.getItemByItemNo(reqDTO.getItemNo()); |
| | | List<ItemVO> predictItemList = new ArrayList<>(); |
| | | predictItemList.add(itemByItemNo); |
| | | Map<String, PredictResultVO> predictResultMap = new HashMap<>(predictItemList.size()); |
| | | predictModuleHandler.predict(predictItemList, reqDTO.getPredictTime(), 0, predictResultMap); |
| | | |
| | | Map<String, List<MdkPredictDataDTO>> itemPredictData = new HashMap<>(); |
| | | |
| | | Map<String, List<DataValueVO>> predictLists = predictResultHandler.convertToPredictData2(predictResultMap.get(reqDTO.getItemNo())); |
| | | for (Map.Entry<String, List<DataValueVO>> dataListEntry : predictLists.entrySet()) { |
| | | List<MdkPredictDataDTO> predictData = dataListEntry.getValue().stream().map(t -> { |
| | | MdkPredictDataDTO dto1 = new MdkPredictDataDTO(); |
| | | dto1.setDataTime(t.getDataTime()); |
| | | dto1.setDataValue(t.getDataValue()); |
| | | return dto1; |
| | | }).collect(Collectors.toList()); |
| | | itemPredictData.put(dataListEntry.getKey(), predictData); |
| | | } |
| | | resp.setPredictData(predictData); |
| | | resp.setItemId(predictItem.getId()); |
| | | resp.setItemId(reqDTO.getItemNo()); |
| | | resp.setPredictTime(reqDTO.getPredictTime()); |
| | | log.info("预测计算结束: " + System.currentTimeMillis()); |
| | | } catch (Exception ex) { |
| | | log.info("预测计算异常: " + System.currentTimeMillis(), ex); |
| | | return resp; |
| | | resp.setPredictData(itemPredictData); |
| | | } catch (Exception e) { |
| | | throw new RuntimeException(e); |
| | | } |
| | | |
| | | return resp; |
| | |
| | | resp.setScheduleTime(reqDTO.getScheduleTime()); |
| | | try { |
| | | log.info("调度计算开始: " + System.currentTimeMillis()); |
| | | ScheduleResultVO scheduleResult = scheduleModelHandler.doSchedule(reqDTO.getModelCode(), reqDTO.getScheduleTime()); |
| | | ScheduleResultVO scheduleResult = scheduleModelHandler.doSchedule(reqDTO.getScheduleCode(), reqDTO.getScheduleTime()); |
| | | resp.setStatusCode(scheduleResult.getResultCode()); |
| | | resp.setResult(scheduleResult.getResult()); |
| | | stScheduleRecordService.create(scheduleResult); |
| | | stScheduleSchemeService.updateTime(scheduleResult.getSchemeId(), scheduleResult.getScheduleTime(), scheduleResult.getResultCode()); |
| | | log.info("预测计算结束: " + System.currentTimeMillis()); |
| | | } catch (Exception ex) { |
| | | log.info("调度计算异常: " + System.currentTimeMillis()); |
| | |
| | | } |
| | | return resp; |
| | | } |
| | | |
| | | @Override |
| | | public Boolean scheduleModelOut(MdkScheduleRespDTO dto) { |
| | | String modelId = stScheduleSchemeService.getByCode(dto.getScheduleCode()).getModelId(); |
| | | Map<String,Object> result = dto.getResult(); |
| | | List<StScheduleModelOutDTO> list = stScheduleModelOutService.list(modelId); |
| | | try{ |
| | | list.forEach( |
| | | item -> { |
| | | double value = 0; |
| | | //判断点位是否下发以及返回结果是否存在 |
| | | if(item.getIsWrite()==1){ |
| | | if(result.get(item.getResultKey())==null){ |
| | | log.error(result.get(item.getResultKey()) + "resultKey匹配失败"); |
| | | } |
| | | Object resultValue = result.get(item.getResultKey()); |
| | | //判断解析方式 |
| | | if(item.getResultType().equals("double")){ |
| | | if(resultValue instanceof Double) { |
| | | value = (Double) resultValue; |
| | | } |
| | | }else if(item.getResultType().equals("double[]")){ |
| | | ArrayList<Double> doubleList = (ArrayList<Double>) resultValue; |
| | | double[] array = new double[doubleList.size()]; |
| | | for (int i = 0; i < doubleList.size(); i++) { |
| | | array[i] = doubleList.get(i); |
| | | } |
| | | if(array!= null && item.getResultPort() < array.length){ |
| | | value = array[item.getResultPort()]; |
| | | }else{ |
| | | log.error(result.get(item.getResultKey()) + "下角标超限"); |
| | | } |
| | | |
| | | }else if(item.getResultType().equals("double[][]")){ |
| | | if (item.getResultType().equals("double[][]")) { |
| | | if (resultValue instanceof ArrayList) { |
| | | ArrayList<ArrayList<Double>> doubleListList = (ArrayList<ArrayList<Double>>) resultValue; |
| | | double[][] array = new double[doubleListList.size()][]; |
| | | for (int i = 0; i < doubleListList.size(); i++) { |
| | | ArrayList<Double> doubleList = doubleListList.get(i); |
| | | array[i] = new double[doubleList.size()]; |
| | | for (int j = 0; j < doubleList.size(); j++) { |
| | | array[i][j] = doubleList.get(j); |
| | | } |
| | | } |
| | | if (array != null && item.getResultPort() < array.length && item.getResultIndex() < array[item.getResultPort()].length) { |
| | | value = array[item.getResultPort()][item.getResultIndex()]; |
| | | } else { |
| | | log.error(result.get(item.getResultKey()) + "下标超限"); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | //下发到point点位 |
| | | ApiPointValueWriteDTO ApiPointValueWriteDTO = new ApiPointValueWriteDTO(); |
| | | ApiPointValueWriteDTO.setPointNo(item.getPointNo()); |
| | | ApiPointValueWriteDTO.setValue(value); |
| | | if (!dataPointApi.writePointRealValue(ApiPointValueWriteDTO)) { |
| | | log.error(result.get(item.getResultKey()) + "下发数据异常"); |
| | | } |
| | | |
| | | } |
| | | } |
| | | ); |
| | | }catch (Exception ex){ |
| | | log.error("下发数据异常"); |
| | | ex.printStackTrace(); |
| | | } |
| | | return true; |
| | | } |
| | | } |