潘志宝
2025-01-03 1ab73b7a790c3c07564c427579ae111037f2bb45
iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/sample/PredictSampleDataConstructor.java
@@ -1,11 +1,17 @@
package com.iailab.module.model.mdk.sample;
import com.iailab.module.data.api.plan.PlanItemApi;
import com.iailab.module.data.api.plan.dto.ApiPlanItemDTO;
import com.iailab.module.data.api.point.DataPointApi;
import com.iailab.module.data.api.point.dto.ApiPointDTO;
import com.iailab.module.data.api.point.dto.ApiPointValueDTO;
import com.iailab.module.data.api.point.dto.ApiPointValueQueryDTO;
import com.iailab.module.data.common.ApiDataQueryDTO;
import com.iailab.module.data.common.ApiDataValueDTO;
import com.iailab.module.model.common.enums.OutResultType;
import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity;
import com.iailab.module.model.mcs.pre.service.MmItemOutputService;
import com.iailab.module.model.mcs.pre.service.MmItemResultJsonService;
import com.iailab.module.model.mcs.pre.service.MmItemResultService;
import com.iailab.module.model.mcs.pre.service.MmItemTypeService;
import com.iailab.module.model.mdk.common.enums.ModelParamType;
@@ -14,18 +20,21 @@
import com.iailab.module.model.mdk.sample.dto.SampleData;
import com.iailab.module.model.mdk.sample.dto.SampleInfo;
import com.iailab.module.model.mdk.vo.DataValueVO;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;
import java.math.BigDecimal;
import java.util.*;
import java.util.stream.Collectors;
/**
 * 预测样本数据构造
 */
@Slf4j
@Component
public class PredictSampleDataConstructor extends SampleDataConstructor {
@@ -35,7 +44,13 @@
    private DataPointApi dataPointApi;
    @Autowired
    private PlanItemApi planItemApi;
    @Autowired
    private MmItemResultService mmItemResultService;
    @Autowired
    private MmItemResultJsonService mmItemResultJsonService;
    @Autowired
    private MmItemTypeService mmItemTypeService;
@@ -51,8 +66,10 @@
     * @return
     */
    @Override
    public List<SampleData> prepareSampleData(SampleInfo sampleInfo) {
    public List<SampleData>  prepareSampleData(SampleInfo sampleInfo) throws Exception {
        List<SampleData> sampleDataList = new ArrayList<>();
        Map<String, ApiPointDTO> pointMap = sampleInfo.getPointMap();
        Map<String, ApiPlanItemDTO> planMap = sampleInfo.getPlanMap();
        //对每个爪分别进行计算
        for (ColumnItemPort entry : sampleInfo.getColumnInfo()) {
            //先依据爪内数据项的modelParamOrder进行排序——重写comparator匿名函数
@@ -74,11 +91,11 @@
            //对每一项依次进行数据查询,然后将查询出的值赋给matrix对应的位置
            for (int i = 0; i < entry.getColumnItemList().size(); i++) {
                try {
                    List<DataValueVO> dataEntityList = getData(entry.getColumnItemList().get(i));
                    List<DataValueVO> dataEntityList = getData(entry.getColumnItemList().get(i),pointMap,planMap);
                    //补全数据
                    ColumnItem columnItem = entry.getColumnItemList().get(i);
                    dataEntityList = super.completionData(matrix.length, dataEntityList, columnItem.startTime, columnItem.endTime,
                            columnItem.paramId, columnItem.getParamType());
                            columnItem.paramId, columnItem.getParamType(),pointMap,planMap);
                    /** 如果数据取不满,把缺失的数据点放在后面 */
                    if (dataEntityList != null && dataEntityList.size() != 0) {
@@ -89,6 +106,7 @@
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                    throw e;
                }
            }
            SampleData sampleData = new SampleData();
@@ -102,20 +120,24 @@
     * getData
     *
     * @param columnItem
     * @param pointMap
     * @param planMap
     * @return
     * @throws Exception
     */
    private List<DataValueVO> getData(ColumnItem columnItem) throws Exception {
    private List<DataValueVO> getData(ColumnItem columnItem, Map<String, ApiPointDTO> pointMap, Map<String, ApiPlanItemDTO> planMap) throws Exception {
        List<DataValueVO> dataList = new ArrayList<>();
        String paramType = columnItem.getParamType();
        switch (ModelParamType.getEumByCode(paramType)) {
            case DATAPOINT:
                ApiPointDTO point = dataPointApi.getInfoById(columnItem.getParamId());
                ApiPointValueQueryDTO queryDto = new ApiPointValueQueryDTO();
                queryDto.setPointNo(point.getPointNo());
                queryDto.setPointNo(pointMap.get(columnItem.getParamId()).getPointNo());
                queryDto.setStart(columnItem.getStartTime());
                queryDto.setEnd(columnItem.getEndTime());
                List<ApiPointValueDTO> pointValueList = dataPointApi.queryPointHistoryValue(queryDto);
                if (CollectionUtils.isEmpty(pointValueList)) {
                    break;
                }
                dataList = pointValueList.stream().map(t -> {
                    DataValueVO vo = new DataValueVO();
                    vo.setDataTime(t.getT());
@@ -126,15 +148,49 @@
            case NORMALITEM:
            case MERGEITEM:
                MmItemOutputEntity outPut = mmItemOutputService.getOutPutById(columnItem.getParamId());
                dataList = mmItemResultService.getPredictValue(outPut.getId(),
                        columnItem.getStartTime(), columnItem.getEndTime());
                if (dataList == null) {
                    throw new Exception("没有预测值");
                OutResultType outResultType = OutResultType.getEumByCode(outPut.getResultType());
                List<DataValueVO> predictValue = new ArrayList<>();
                // double类型特殊处理
                if (OutResultType.D.equals(outResultType)) {
                    // columnItem.getStartTime()就是预测时间
                    String doubleData = mmItemResultJsonService.getDoubleData(outPut.getId(), columnItem.getStartTime());
                    if (StringUtils.isNotBlank(doubleData)) {
                        DataValueVO dataValueVO = new DataValueVO();
                        dataValueVO.setDataTime(columnItem.getStartTime());
                        dataValueVO.setDataValue(Double.valueOf(doubleData));
                        predictValue.add(dataValueVO);
                    }
                } else {
                    predictValue = mmItemResultService.getPredictValue(outPut.getId(), columnItem.getStartTime(), columnItem.getEndTime());
                }
                if (CollectionUtils.isEmpty(predictValue)) {
                    break;
                }
                dataList = predictValue;
                break;
            case PLAN:
                ApiDataQueryDTO queryPlanItemDto = new ApiDataQueryDTO();
                queryPlanItemDto.setItemNo(planMap.get(columnItem.getParamId()).getItemNo());
                queryPlanItemDto.setStart(columnItem.getStartTime());
                queryPlanItemDto.setEnd(columnItem.getEndTime());
                List<ApiDataValueDTO> planValueList = planItemApi.queryPlanItemHistoryValue(queryPlanItemDto);
                if (CollectionUtils.isEmpty(planValueList)) {
                    break;
                }
                dataList = planValueList.stream().map(t -> {
                    DataValueVO vo = new DataValueVO();
                    vo.setDataTime(t.getDataTime());
                    vo.setDataValue(t.getDataValue());
                    return vo;
                }).collect(Collectors.toList());
            default:
                break;
        }
        // 避免生产环境日志过多,分级打印
        log.debug("数据获取,columnItem:" + columnItem + ",dataList:" + dataList);
        log.info("数据获取,columnItem:" + columnItem + ",dataListLength:" + dataList.size());
        return dataList;
    }
}