dengzedong
2 天以前 1178da30ca701da465bf7bc1342b539b2df03c7d
iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mdk/predict/impl/PredictItemMergeHandlerImpl.java
@@ -2,7 +2,11 @@
import com.iailab.module.data.api.point.DataPointApi;
import com.iailab.module.data.api.point.dto.ApiPointDTO;
import com.iailab.module.data.enums.DataPointFreq;
import com.iailab.module.data.enums.DataPointFreqEnum;
import com.iailab.module.model.mcs.pre.entity.MmItemOutputEntity;
import com.iailab.module.model.mcs.pre.enums.ItemRunStatusEnum;
import com.iailab.module.model.mcs.pre.service.MmItemOutputService;
import com.iailab.module.model.mcs.pre.service.MmItemResultService;
import com.iailab.module.model.mdk.common.enums.ItemPredictStatus;
import com.iailab.module.model.mdk.common.exceptions.ItemInvokeException;
import com.iailab.module.model.mdk.factory.ItemEntityFactory;
@@ -11,7 +15,6 @@
import com.iailab.module.model.mdk.predict.PredictResultHandler;
import com.iailab.module.model.mdk.vo.DataValueVO;
import com.iailab.module.model.mdk.vo.ItemVO;
import com.iailab.module.model.mdk.vo.MmItemOutputVO;
import com.iailab.module.model.mdk.vo.PredictResultVO;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
@@ -19,6 +22,7 @@
import java.sql.Timestamp;
import java.util.*;
import java.util.stream.Collectors;
/**
 * @author PanZhibao
@@ -41,8 +45,22 @@
    @Autowired
    private PredictResultHandler predictResultHandler;
    @Autowired
    private MmItemResultService mmItemResultService;
    @Autowired
    private MmItemOutputService mmItemOutputService;
    /**
     * MergeItem预测
     *
     * @param predictTime
     * @param predictItemDto
     * @return
     * @throws ItemInvokeException
     */
    @Override
    public PredictResultVO predict(Date predictTime, ItemVO predictItemDto)
    public PredictResultVO predict(Date predictTime, ItemVO predictItemDto, Map<String, double[]> predictValueMap)
            throws ItemInvokeException {
        PredictResultVO predictResult = new PredictResultVO();
        ItemPredictStatus itemStatus = ItemPredictStatus.PREDICTING;
@@ -51,69 +69,73 @@
            String expression = itemEntityFactory.getMergeItem(itemId).getExpression();
            int predictLength = itemEntityFactory.getItemById(itemId).getPredictLength();
            double[][] predictResultMat = new double[predictLength][1];
            Map<String, List<DataValueVO>> predictValueMap = new HashMap<>();
            String[] mathItem = expression.split("[\\+ \\-]");
            String[] mathOutPutId = expression.split("[\\+ \\-]");
            ArrayList<Character> operator = new ArrayList<>();
            for (int i = 0; i < expression.length(); i++) {
                if (expression.charAt(i)=='+' || expression.charAt(i)=='-'){
                    operator.add(expression.charAt(i));
                }
            }
            String[] compositionItem = expression.split(String.valueOf("&".toCharArray()));
//            String[] compositionItem = expression.split(String.valueOf("&".toCharArray()));
            //是否为计算预测项
            if (mathItem.length > 1) {
                for (String itemNo : mathItem) {
                    if (itemNo.length() > 4) {
                        Date endTime = predictTime;
                        ItemVO itemEntity = itemEntityFactory.getItemByItemNo(itemNo);
                        List<MmItemOutputVO> outPutList = itemEntityFactory.getOutPutByItemId(itemEntity.getId());
                        ApiPointDTO pointEntity = dataPointApi.getPointById(outPutList.get(0).getPointId());
            if (mathOutPutId.length > 1) {
//                Map<String, List<DataValueVO>> predictValueMap = new HashMap<>();
//                for (String outPutId : mathOutPutId) {
//                    if (outPutId.length() > 4) {
//                        Date endTime = predictTime;
////                        ItemVO itemEntity = itemEntityFactory.getItemByItemNo(itemNo);
////                        List<MmItemOutputEntity> outPutList = itemEntityFactory.getOutPutByItemId(itemEntity.getId());
//                        MmItemOutputEntity outPut = mmItemOutputService.getOutPutById(outPutId);
//                        ApiPointDTO pointEntity = dataPointApi.getInfoById(outPut.getPointid());
//
//                        Calendar calendar = Calendar.getInstance();
//                        calendar.setTime(endTime);
//                        calendar.add(Calendar.SECOND, (predictLength - 1) * DataPointFreqEnum.getEumByCode(pointEntity.getMinfreqid()).getValue());
//                        endTime = new Timestamp(calendar.getTime().getTime());
////                        List<DataValueVO> predictValueList = predictResultHandler.getPredictValueByItemNo(itemNo, predictTime, endTime);
//                        List<DataValueVO> predictValueList = mmItemResultService.getPredictValue(outPutId, predictTime, endTime);
//                        if (predictValueList.size() != predictLength) {
//                            log.debug("merge项融合失败:缺少子项预测数据,对应子项outPutId=" + outPutId);
//                            return null;
//                        }
//                        predictValueMap.put(outPutId, predictValueList);
//                    }
//                }
                        Calendar calendar = Calendar.getInstance();
                        calendar.setTime(endTime);
                        calendar.add(Calendar.SECOND, (predictLength - 1) * DataPointFreq.getEumByCode(pointEntity.getMinfreqid()).getValue());
                        endTime = new Timestamp(calendar.getTime().getTime());
                        List<DataValueVO> predictValueList = predictResultHandler.getPredictValueByItemNo(itemNo, predictTime, endTime);
                        if (predictValueList.size() != predictLength) {
                            log.debug("merge项融合失败:缺少子项预测数据,对应子项ItemNo=" + itemNo);
                            return null;
                        }
                        predictValueMap.put(itemNo, predictValueList);
                    }
                }
                for (Integer i = 0; i < predictLength; i++) {
                    double sum =0.0;
                    sum = predictValueMap.get(mathItem[0]).get(i).getDataValue();
                    for (int j = 1; j < mathItem.length; j++) {
                    sum = predictValueMap.get(mathOutPutId[0])[i];
                    for (int j = 1; j < mathOutPutId.length; j++) {
                        if (operator.get(j-1)=='+')
                        {sum += predictValueMap.get(mathItem[j]).get(i).getDataValue();}
                        {sum += predictValueMap.get(mathOutPutId[j])[i];}
                        if (operator.get(j-1)=='-')
                        {sum -= predictValueMap.get(mathItem[j]).get(i).getDataValue();}
                        {sum -= predictValueMap.get(mathOutPutId[j])[i];}
                    }
                    predictResultMat[i][0] = sum;
                }
            }
            //是否为组合预测项
            if (compositionItem.length > 1) {
                Map<String, PredictResultVO> predictResultMap = new HashMap<>();
                Integer columnTotalNumber = 0;
                Integer rowNumber = 0;
                for (String itemNo : compositionItem) {
                    PredictItemHandler predictItem = (PredictItemHandler) predictItemFactory.create(itemEntityFactory.
                            getItemByItemNo(itemNo).getId());
                    predictResult = predictItem.predict(predictTime, predictItemDto);
                    columnTotalNumber += Integer.valueOf(predictResult.getPredictMatrix().length);
                    predictResultMap.put(itemNo, predictItem.predict(predictTime, predictItemDto));
                }
                double[][] matrix = new double[columnTotalNumber][1];
                for (String itemNo : compositionItem) {
                    for (Integer i = 0; i < predictResultMap.get(itemNo).getPredictMatrix().length; i++) {
                        matrix[rowNumber][0] = predictResultMap.get(itemNo).getPredictMatrix()[i][0];
                        rowNumber++;
                    }
                }
                predictResult.setPredictMatrix(matrix);
            }
//            if (compositionItem.length > 1) {
//                Map<String, PredictResultVO> predictResultMap = new HashMap<>();
//                Integer columnTotalNumber = 0;
//                Integer rowNumber = 0;
//                for (String itemNo : compositionItem) {
//                    PredictItemHandler predictItem = (PredictItemHandler) predictItemFactory.create(itemEntityFactory.
//                            getItemByItemNo(itemNo).getId());
//                    predictResult = predictItem.predict(predictTime, predictItemDto);
//                    columnTotalNumber += Integer.valueOf(predictResult.getPredictMatrix().length);
//                    predictResultMap.put(itemNo, predictItem.predict(predictTime, predictItemDto));
//                }
//                double[][] matrix = new double[columnTotalNumber][1];
//                for (String itemNo : compositionItem) {
//                    for (Integer i = 0; i < predictResultMap.get(itemNo).getPredictMatrix().length; i++) {
//                        matrix[rowNumber][0] = predictResultMap.get(itemNo).getPredictMatrix()[i][0];
//                        rowNumber++;
//                    }
//                }
//                predictResult.setPredictMatrix(matrix);
//            }
            log.info("计算预测模型结果:" + predictResultMat);
            predictResult.setPredictId(itemId);
            predictResult.setPredictMatrix(predictResultMat);
            predictResult.setPredictTime(predictTime);