| | |
| | | |
| | | import java.sql.Timestamp; |
| | | import java.util.*; |
| | | import java.util.stream.Collectors; |
| | | |
| | | /** |
| | | * @author PanZhibao |
| | |
| | | * @throws ItemInvokeException |
| | | */ |
| | | @Override |
| | | public PredictResultVO predict(Date predictTime, ItemVO predictItemDto) |
| | | public PredictResultVO predict(Date predictTime, ItemVO predictItemDto,Map<String, double[]> predictValueMap) |
| | | throws ItemInvokeException { |
| | | PredictResultVO predictResult = new PredictResultVO(); |
| | | ItemPredictStatus itemStatus = ItemPredictStatus.PREDICTING; |
| | |
| | | String expression = itemEntityFactory.getMergeItem(itemId).getExpression(); |
| | | int predictLength = itemEntityFactory.getItemById(itemId).getPredictLength(); |
| | | double[][] predictResultMat = new double[predictLength][1]; |
| | | Map<String, List<DataValueVO>> predictValueMap = new HashMap<>(); |
| | | String[] mathOutPutId = expression.split("[\\+ \\-]"); |
| | | ArrayList<Character> operator = new ArrayList<>(); |
| | | for (int i = 0; i < expression.length(); i++) { |
| | |
| | | operator.add(expression.charAt(i)); |
| | | } |
| | | } |
| | | String[] compositionItem = expression.split(String.valueOf("&".toCharArray())); |
| | | // String[] compositionItem = expression.split(String.valueOf("&".toCharArray())); |
| | | //是否为计算预测项 |
| | | if (mathOutPutId.length > 1) { |
| | | for (String outPutId : mathOutPutId) { |
| | | if (outPutId.length() > 4) { |
| | | Date endTime = predictTime; |
| | | // ItemVO itemEntity = itemEntityFactory.getItemByItemNo(itemNo); |
| | | // List<MmItemOutputEntity> outPutList = itemEntityFactory.getOutPutByItemId(itemEntity.getId()); |
| | | MmItemOutputEntity outPut = mmItemOutputService.getOutPutById(outPutId); |
| | | ApiPointDTO pointEntity = dataPointApi.getInfoById(outPut.getPointid()); |
| | | // Map<String, List<DataValueVO>> predictValueMap = new HashMap<>(); |
| | | // for (String outPutId : mathOutPutId) { |
| | | // if (outPutId.length() > 4) { |
| | | // Date endTime = predictTime; |
| | | //// ItemVO itemEntity = itemEntityFactory.getItemByItemNo(itemNo); |
| | | //// List<MmItemOutputEntity> outPutList = itemEntityFactory.getOutPutByItemId(itemEntity.getId()); |
| | | // MmItemOutputEntity outPut = mmItemOutputService.getOutPutById(outPutId); |
| | | // ApiPointDTO pointEntity = dataPointApi.getInfoById(outPut.getPointid()); |
| | | // |
| | | // Calendar calendar = Calendar.getInstance(); |
| | | // calendar.setTime(endTime); |
| | | // calendar.add(Calendar.SECOND, (predictLength - 1) * DataPointFreqEnum.getEumByCode(pointEntity.getMinfreqid()).getValue()); |
| | | // endTime = new Timestamp(calendar.getTime().getTime()); |
| | | //// List<DataValueVO> predictValueList = predictResultHandler.getPredictValueByItemNo(itemNo, predictTime, endTime); |
| | | // List<DataValueVO> predictValueList = mmItemResultService.getPredictValue(outPutId, predictTime, endTime); |
| | | // if (predictValueList.size() != predictLength) { |
| | | // log.debug("merge项融合失败:缺少子项预测数据,对应子项outPutId=" + outPutId); |
| | | // return null; |
| | | // } |
| | | // predictValueMap.put(outPutId, predictValueList); |
| | | // } |
| | | // } |
| | | |
| | | Calendar calendar = Calendar.getInstance(); |
| | | calendar.setTime(endTime); |
| | | calendar.add(Calendar.SECOND, (predictLength - 1) * DataPointFreqEnum.getEumByCode(pointEntity.getMinfreqid()).getValue()); |
| | | endTime = new Timestamp(calendar.getTime().getTime()); |
| | | // List<DataValueVO> predictValueList = predictResultHandler.getPredictValueByItemNo(itemNo, predictTime, endTime); |
| | | List<DataValueVO> predictValueList = mmItemResultService.getPredictValue(outPutId, predictTime, endTime); |
| | | if (predictValueList.size() != predictLength) { |
| | | log.debug("merge项融合失败:缺少子项预测数据,对应子项outPutId=" + outPutId); |
| | | return null; |
| | | } |
| | | predictValueMap.put(outPutId, predictValueList); |
| | | } |
| | | } |
| | | for (Integer i = 0; i < predictLength; i++) { |
| | | double sum =0.0; |
| | | sum = predictValueMap.get(mathOutPutId[0]).get(i).getDataValue(); |
| | | sum = predictValueMap.get(mathOutPutId[0])[i]; |
| | | for (int j = 1; j < mathOutPutId.length; j++) { |
| | | if (operator.get(j-1)=='+') |
| | | {sum += predictValueMap.get(mathOutPutId[j]).get(i).getDataValue();} |
| | | {sum += predictValueMap.get(mathOutPutId[j])[i];} |
| | | if (operator.get(j-1)=='-') |
| | | {sum -= predictValueMap.get(mathOutPutId[j]).get(i).getDataValue();} |
| | | {sum -= predictValueMap.get(mathOutPutId[j])[i];} |
| | | } |
| | | predictResultMat[i][0] = sum; |
| | | } |
| | | } |
| | | //是否为组合预测项 |
| | | if (compositionItem.length > 1) { |
| | | Map<String, PredictResultVO> predictResultMap = new HashMap<>(); |
| | | Integer columnTotalNumber = 0; |
| | | Integer rowNumber = 0; |
| | | for (String itemNo : compositionItem) { |
| | | PredictItemHandler predictItem = (PredictItemHandler) predictItemFactory.create(itemEntityFactory. |
| | | getItemByItemNo(itemNo).getId()); |
| | | predictResult = predictItem.predict(predictTime, predictItemDto); |
| | | columnTotalNumber += Integer.valueOf(predictResult.getPredictMatrix().length); |
| | | predictResultMap.put(itemNo, predictItem.predict(predictTime, predictItemDto)); |
| | | } |
| | | double[][] matrix = new double[columnTotalNumber][1]; |
| | | for (String itemNo : compositionItem) { |
| | | for (Integer i = 0; i < predictResultMap.get(itemNo).getPredictMatrix().length; i++) { |
| | | matrix[rowNumber][0] = predictResultMap.get(itemNo).getPredictMatrix()[i][0]; |
| | | rowNumber++; |
| | | } |
| | | } |
| | | predictResult.setPredictMatrix(matrix); |
| | | } |
| | | // if (compositionItem.length > 1) { |
| | | // Map<String, PredictResultVO> predictResultMap = new HashMap<>(); |
| | | // Integer columnTotalNumber = 0; |
| | | // Integer rowNumber = 0; |
| | | // for (String itemNo : compositionItem) { |
| | | // PredictItemHandler predictItem = (PredictItemHandler) predictItemFactory.create(itemEntityFactory. |
| | | // getItemByItemNo(itemNo).getId()); |
| | | // predictResult = predictItem.predict(predictTime, predictItemDto); |
| | | // columnTotalNumber += Integer.valueOf(predictResult.getPredictMatrix().length); |
| | | // predictResultMap.put(itemNo, predictItem.predict(predictTime, predictItemDto)); |
| | | // } |
| | | // double[][] matrix = new double[columnTotalNumber][1]; |
| | | // for (String itemNo : compositionItem) { |
| | | // for (Integer i = 0; i < predictResultMap.get(itemNo).getPredictMatrix().length; i++) { |
| | | // matrix[rowNumber][0] = predictResultMap.get(itemNo).getPredictMatrix()[i][0]; |
| | | // rowNumber++; |
| | | // } |
| | | // } |
| | | // predictResult.setPredictMatrix(matrix); |
| | | // } |
| | | predictResult.setPredictId(itemId); |
| | | predictResult.setPredictMatrix(predictResultMat); |
| | | predictResult.setPredictTime(predictTime); |