工业互联网平台2.0版本后端代码
Jay
2025-05-27 c15305c4cd93bd238d1a0db5295d3f91ad9f111e
iailab-module-model/iailab-module-model-biz/src/main/java/com/iailab/module/model/mcs/pre/service/impl/MmPredictAutoAdjustConfigServiceImpl.java
@@ -4,6 +4,7 @@
import com.iailab.framework.common.pojo.PageResult;
import com.iailab.framework.common.service.impl.BaseServiceImpl;
import com.iailab.module.data.api.point.DataPointApi;
import com.iailab.module.data.api.point.dto.ApiPointDTO;
import com.iailab.module.data.api.point.dto.ApiPointValueDTO;
import com.iailab.module.data.api.point.dto.ApiPointValueQueryDTO;
import com.iailab.module.model.common.enums.DataTypeEnum;
@@ -27,6 +28,7 @@
import java.math.BigDecimal;
import java.util.*;
import java.util.function.Predicate;
import java.util.stream.Collectors;
/**
@@ -58,8 +60,8 @@
    }
    @Override
    public MmPredictAutoAdjustConfigEntity getByCode(String code) {
        return baseDao.selectOne("config_code",code,"is_enable",1);
    public List<MmPredictAutoAdjustConfigEntity> getByCode(String code) {
        return baseDao.selectList(MmPredictAutoAdjustConfigEntity::getConfigCode,code,MmPredictAutoAdjustConfigEntity::getIsEnable,1);
    }
    @Override
@@ -81,137 +83,187 @@
    @Override
    public boolean autoAdjustByCode(String configCode,long adjustStartTime) {
        log.info("开始自动调整:configCode:" + configCode + ",adjustStartTime:" + new Date(adjustStartTime));
        // 查询调整配置
        MmPredictAutoAdjustConfigEntity configEntity = getByCode(configCode);
        if (configEntity == null) {
            log.info("自动调整失败原因:configEntity为null");
        List<MmPredictAutoAdjustConfigEntity> configEntityList = getByCode(configCode);
        if (CollectionUtils.isEmpty(configEntityList)) {
            log.info("自动调整失败原因:configEntityList为空");
            return false;
        }
        Double adjustValue = 0.0;
        ApiPointValueQueryDTO queryDTO;
        Calendar calendar = Calendar.getInstance();
        calendar.setTimeInMillis(adjustStartTime);
        Date endTime;
        Date startTime;
        List<ApiPointValueDTO> apiPointValueDTOS;
        // 判断是否调整
        AutoAdjustTriggerRuleEnum triggerRuleEnum = AutoAdjustTriggerRuleEnum.fromCode(configEntity.getTriggerRule());
        switch (triggerRuleEnum) {
            case SLOPE:
                queryDTO = new ApiPointValueQueryDTO();
                queryDTO.setPointNo(dataPointApi.getInfoById(configEntity.getPointId()).getPointNo());
                endTime = calendar.getTime();
        // 根据outputId分组
        Map<String, List<MmPredictAutoAdjustConfigEntity>> outputIdMap = configEntityList.stream().collect(Collectors.groupingBy(MmPredictAutoAdjustConfigEntity::getOutputId));
        for (Map.Entry<String, List<MmPredictAutoAdjustConfigEntity>> entry : outputIdMap.entrySet()) {
            String outputId = entry.getKey();
            // 查询调整用户adjustStartTime 至 adjustStartTime - 预测长度 * 预测粒度 范围的值
            Calendar calendar = Calendar.getInstance();
            calendar.setTimeInMillis(adjustStartTime);
            Date endTime = calendar.getTime();
            ItemVO item = mmPredictItemService.getItemByOutPutId(outputId);
            if (item == null) {
                log.info("自动调整失败原因:getItemByOutPutId为null,outputId:" + outputId);
                continue;
            }
            calendar.add(Calendar.SECOND,item.getPredictLength() * item.getGranularity() * -1);
            Date startTime = calendar.getTime();
            // 获取预测历史结果
            InfluxModelResultPOJO pojo = new InfluxModelResultPOJO();
            pojo.setType(DataTypeEnum.FLOAT_LAST_BAK.getCode());
            pojo.setOutPutId(outputId);
            List<InfluxModelResultVO> influxModelResult = influxDBService.queryModelResults(pojo, new Date(adjustStartTime), new Date(adjustStartTime));
            if (CollectionUtils.isEmpty(influxModelResult)) {
                log.info("自动调整失败原因:预测历史结果为空。itemNo:" + item.getItemNo() + ",itemName:" + item.getItemName() + ",outputId:" + outputId + ",time:" + adjustStartTime);
                continue;
            }
            // 计算所有影响用户的最终调整值
            Double finalAdjustValue = 0.0;
            for (MmPredictAutoAdjustConfigEntity configEntity : entry.getValue()) {
                Double adjustValue = null;
                // 查询影响用户历史值
                ApiPointValueQueryDTO queryDTO = new ApiPointValueQueryDTO();
                ApiPointDTO pointInfo = dataPointApi.getInfoById(configEntity.getPointId());
                if (pointInfo == null) {
                    log.info("自动调整失败原因:影响用户pointInfo为空。pointId:" + configEntity.getPointId() + "configCode:" + configEntity.getConfigCode() + "configName:" + configEntity.getConfigName());
                    continue;
                }
                log.info("自动调整开始处理:configName:" + configEntity.getConfigName() + "影响用户:" + pointInfo.getPointName());
                queryDTO.setPointNo(pointInfo.getPointNo());
                queryDTO.setEnd(endTime);
                calendar.add(Calendar.MINUTE,-1 * configEntity.getT());
                startTime = calendar.getTime();
                queryDTO.setStart(startTime);
                apiPointValueDTOS = dataPointApi.queryPointHistoryValue(queryDTO);
                List<ApiPointValueDTO> apiPointValueDTOS = dataPointApi.queryPointHistoryValue(queryDTO);
                if (CollectionUtils.isEmpty(apiPointValueDTOS)) {
                    log.info("自动调整失败原因:测点数据长度为0");
                    return false;
                    log.info("影响用户[" + pointInfo.getPointName() + "]调整失败原因:测点数据长度为0。queryDTO:" + queryDTO);
                    continue;
                }
                apiPointValueDTOS = apiPointValueDTOS.stream().filter(e -> e.getV() != -2).collect(Collectors.toList());
                // 过滤掉-2
                apiPointValueDTOS = apiPointValueDTOS.stream().filter(e -> !Double.valueOf(e.getV()).equals(-2.0)).collect(Collectors.toList());
                if (CollectionUtils.isEmpty(apiPointValueDTOS)) {
                    log.info("自动调整失败原因:测点数据长度为0");
                    return false;
                    log.info("影响用户调整失败原因:过滤掉-2之后测点数据长度为0。queryDTO:" + queryDTO);
                    continue;
                }
                Optional<ApiPointValueDTO> startOptional = apiPointValueDTOS.stream().filter(e -> e.getT().equals(startTime)).findFirst();
                if (!startOptional.isPresent()) {
                    log.info("自动调整失败原因:计算斜率startTime时间点测点值为null,startTime:" + startTime);
                    return false;
                }
                Optional<ApiPointValueDTO> endOptional = apiPointValueDTOS.stream().filter(e -> e.getT().equals(endTime)).findFirst();
                if (!endOptional.isPresent()) {
                    log.info("自动调整失败原因:计算斜率endTime时间点测点值为null,endTime:" + endTime);
                    return false;
                }
                ApiPointValueDTO startPointValue = startOptional.get();
                ApiPointValueDTO endPointValue = endOptional.get();
                // 计算斜率,有正负之分,代表上升或下降
                double slope = BigDecimal.valueOf(endPointValue.getV() - startPointValue.getV()).divide(BigDecimal.valueOf(configEntity.getT())).doubleValue();
                //斜率绝对值大于等于触发值则进行调整
                if (Double.valueOf(Math.abs(slope)).compareTo(configEntity.getTriggerValue()) >= 0) {
                    //计算调整值
                    HashMap<String,Object> map = new HashMap<>();
                    map.put("startValue",startPointValue.getV());
                    map.put("endValue",endPointValue.getV());
                    adjustValue = AutoAdjustValueRuleEnum.getAdjustValue(configEntity.getAdjustValueRule(), map);
                } else {
                    log.info("自动调整失败原因:斜率小于调整值,斜率:" + slope);
                    return false;
                // 触发规则
                AutoAdjustTriggerRuleEnum triggerRuleEnum = AutoAdjustTriggerRuleEnum.fromCode(configEntity.getTriggerRule());
                // 判断是否符合触发条件 并计算调整值
                switch (triggerRuleEnum) {
                    case SLOPE:
                        // 计算每个△t的斜率,任意一个大于触发值则认为该区间有调整
                        Calendar slopeCalendar = Calendar.getInstance();
                        slopeCalendar.setTime(startTime);
                        Date slopeStartTime = slopeCalendar.getTime();
                        slopeCalendar.add(Calendar.MINUTE,configEntity.getT());
                        Date slopeEndTime = slopeCalendar.getTime();
                        if (slopeEndTime.after(endTime)) {
                            log.info("影响用户[" + pointInfo.getPointName() + "]调整失败原因:△t设置过大,大于模型预测长度 * 预测粒度。△t:" + configEntity.getT());
                            continue;
                        }
                        while (!slopeEndTime.after(endTime)) {
                            //计算斜率
                            //△t开始时间测点值
                            Date finalSlopeStartTime = slopeStartTime;
                            Optional<ApiPointValueDTO> startOptional = apiPointValueDTOS.stream().filter(apiPointValueDTO -> apiPointValueDTO.getT().equals(finalSlopeStartTime)).findFirst();
                            //△t结束时间测点值
                            Date finalSlopeEndTime = slopeEndTime;
                            Optional<ApiPointValueDTO> endOptional = apiPointValueDTOS.stream().filter(e -> e.getT().equals(finalSlopeEndTime)).findFirst();
                            if (startOptional.isPresent() && endOptional.isPresent()) {
                                ApiPointValueDTO startPointValue = startOptional.get();
                                ApiPointValueDTO endPointValue = endOptional.get();
                                // 计算斜率
                                double slope = BigDecimal.valueOf(endPointValue.getV() - startPointValue.getV()).divide(BigDecimal.valueOf(configEntity.getT())).doubleValue();
                                // 斜率大于等于触发值则进行调整
                                if (Double.valueOf(Math.abs(slope)).compareTo(configEntity.getTriggerValue()) >= 0) {
                                    // 计算调整值 并跳出循环
                                    adjustValue = AutoAdjustValueRuleEnum.getAdjustValue(configEntity.getAdjustValueRule(), apiPointValueDTOS);
                                    log.info("计算调整值:" + adjustValue + ",斜率:" + slope + ",pointNo:" + pointInfo.getPointNo() + ",pointName:" + pointInfo.getPointName() + ",slopeStartTime:" + slopeStartTime + ",slopeEndTime:" + slopeEndTime);
                                    break;
                                }
                                log.info("斜率不满足条件,斜率:" + slope);
                            }
                            // 下一个△t
                            slopeStartTime = slopeCalendar.getTime();
                            slopeCalendar.add(Calendar.MINUTE,configEntity.getT());
                            slopeEndTime = slopeCalendar.getTime();
                        }
                        break;
                    case AVERAGE_GAP:
                        // 计算每两个△t的平均差,任意一个大于触发值则认为该区间有调整
                        Calendar averageCalendar = Calendar.getInstance();
                        averageCalendar.setTime(startTime);
                        Date averageStartTime = averageCalendar.getTime();
                        averageCalendar.add(Calendar.MINUTE,configEntity.getT());
                        Date averageMiddleTime = averageCalendar.getTime();
                        averageCalendar.add(Calendar.MINUTE,configEntity.getT());
                        Date averageEndTime = averageCalendar.getTime();
                        if (averageEndTime.after(endTime)) {
                            log.info("影响用户[" + pointInfo.getPointName() + "]调整失败原因:△t设置过大,△t*2大于模型预测长度 * 预测粒度。△t:" + configEntity.getT());
                            continue;
                        }
                        while (!averageEndTime.after(endTime)) {
                            //计算均值差
                            //前△t测点平均值
                            Date finalAverageStartTime = averageStartTime;
                            Date finalAverageMiddleTime = averageMiddleTime;
                            OptionalDouble startAverage = apiPointValueDTOS.stream().filter(e -> e.getT().after(finalAverageStartTime) && !e.getT().after(finalAverageMiddleTime)).mapToDouble(ApiPointValueDTO::getV).average();
                            //后△t测点平均值
                            Date finalAverageEndTime = averageEndTime;
                            OptionalDouble endAverage = apiPointValueDTOS.stream().filter(e -> e.getT().after(finalAverageMiddleTime) && !e.getT().after(finalAverageEndTime)).mapToDouble(ApiPointValueDTO::getV).average();
                            if (startAverage.isPresent() && endAverage.isPresent()) {
                                double averageGapValue = startAverage.getAsDouble() - endAverage.getAsDouble();
                                // 均值差,大于等于触发值则进行调整
                                if (Double.valueOf(Math.abs(averageGapValue)).compareTo(configEntity.getTriggerValue()) >= 0) {
                                    // 计算调整值 并跳出循环
                                    adjustValue = AutoAdjustValueRuleEnum.getAdjustValue(configEntity.getAdjustValueRule(), apiPointValueDTOS);
                                    log.info("计算调整值:" + adjustValue + ",均值差:" + averageGapValue + ",pointNo:" + pointInfo.getPointNo() + ",pointName:" + pointInfo.getPointName() + ",averageStartTime:" + averageStartTime + ",averageMiddleTime:" + averageMiddleTime + ",averageEndTime:" + averageEndTime);
                                    break;
                                }
                                log.info("均值差不满足条件,均值差:" + averageGapValue);
                            }
                            // 下一个△t
                            averageStartTime = averageMiddleTime;
                            averageMiddleTime = averageEndTime;
                            averageCalendar.add(Calendar.MINUTE,configEntity.getT());
                            averageEndTime = averageCalendar.getTime();
                        }
                        break;
                    default:
                        log.info("影响用户[" + pointInfo.getPointName() + "]调整失败原因:未知触发规则,triggerRule" + configEntity.getTriggerRule());
                        continue;
                }
                break;
            case AVERAGE_GAP:
                queryDTO = new ApiPointValueQueryDTO();
                queryDTO.setPointNo(dataPointApi.getInfoById(configEntity.getPointId()).getPointNo());
                endTime = calendar.getTime();
                queryDTO.setEnd(endTime);
                calendar.add(Calendar.MINUTE,-1 * configEntity.getT() * 2 + 1);
                startTime = calendar.getTime();
                queryDTO.setStart(startTime);
                apiPointValueDTOS = dataPointApi.queryPointHistoryValue(queryDTO);
                if (CollectionUtils.isEmpty(apiPointValueDTOS)) {
                    log.info("自动调整失败原因:测点数据长度为0");
                    return false;
                if (adjustValue == null) {
                    log.info("影响用户[" + pointInfo.getPointName() + "]调整失败原因:未达到触发条件");
                    continue;
                }
                apiPointValueDTOS = apiPointValueDTOS.stream().filter(e -> e.getV() != -2).collect(Collectors.toList());
                if (CollectionUtils.isEmpty(apiPointValueDTOS)) {
                    log.info("自动调整失败原因:测点数据长度为0");
                    return false;
                }
                calendar.add(Calendar.MINUTE,configEntity.getT());
                double startAverage = apiPointValueDTOS.stream().filter(e -> e.getT().before(calendar.getTime())).collect(Collectors.summarizingDouble(ApiPointValueDTO::getV)).getAverage();
                double endAverage = apiPointValueDTOS.stream().filter(e -> e.getT().compareTo(calendar.getTime()) >= 0).collect(Collectors.summarizingDouble(ApiPointValueDTO::getV)).getAverage();
                // 计算均值差,大于等于触发值则进行调整
                if (Double.valueOf(Math.abs(startAverage - endAverage)).compareTo(configEntity.getTriggerValue()) >= 0) {
                    //计算调整值
                    HashMap<String,Object> map = new HashMap<>();
                    map.put("startValue",startAverage);
                    map.put("endValue",endAverage);
                    adjustValue = AutoAdjustValueRuleEnum.getAdjustValue(configEntity.getAdjustValueRule(), map);
                } else {
                    log.info("自动调整失败原因:均值差小于调整值,均值差:" + (startAverage - endAverage));
                    return false;
                }
                break;
            default:
                log.info("自动调整失败原因:未知触发规则,triggerRule" + configEntity.getTriggerRule());
                return false;
                // 调整系数
                adjustValue = adjustValue * configEntity.getAdjustCoefficient();
                // 调整方向
                adjustValue = adjustValue * configEntity.getAdjustDirection();
                // 累加到最终调整值
                finalAdjustValue += adjustValue;
            }
            // 执行调整
            if (finalAdjustValue.equals(0.0)) {
                log.info("自动调整失败原因:finalAdjustValue为0,outputId:" + outputId + ",configCode:" + configCode);
                continue;
            }
            List<InfluxModelResultPOJO> lastList = new ArrayList<>();
            for (InfluxModelResultVO resultVO : influxModelResult) {
                InfluxModelResultLastSimPOJO adjustPojo = new InfluxModelResultLastSimPOJO();
                // 设置新的调整值
                adjustPojo.setValue(Double.parseDouble(resultVO.getValue().toString()) + finalAdjustValue);
                adjustPojo.setTimestamp(resultVO.getTimestamp());
                adjustPojo.setOutPutId(outputId);
                lastList.add(adjustPojo);
            }
            // 相同时间直接覆盖旧值
            influxDBService.asyncWriteModelResults(lastList);
            log.info("t+l自动调整。configCode:" + configCode + ",adjustValue:" + finalAdjustValue + ",itemNo:" + item.getItemNo() + ",itemName:" + item.getItemName() + ",outputId:" + outputId + ",adjustTime:" + adjustStartTime);
        }
        // 调整方向
        adjustValue = adjustValue * configEntity.getAdjustDirection();
        // 获取历史结果
        ItemVO item = mmPredictItemService.getItemByOutPutId(configEntity.getOutputId());
        if (item == null) {
            log.info("自动调整失败原因:getItemByOutPutId为null,outputId:" + configEntity.getOutputId());
            return false;
        }
        Calendar resultCalendar = Calendar.getInstance();
        resultCalendar.setTimeInMillis(adjustStartTime);
        Date resultStartTime = resultCalendar.getTime();
        resultCalendar.add(Calendar.SECOND,configEntity.getAdjustLength() * item.getGranularity());
        Date resultEndTime = resultCalendar.getTime();
        InfluxModelResultPOJO pojo = new InfluxModelResultPOJO();
        pojo.setType(DataTypeEnum.FLOAT_LAST_BAK.getCode());
        pojo.setOutPutId(configEntity.getOutputId());
        List<InfluxModelResultVO> influxModelResult = influxDBService.queryModelResults(pojo, resultStartTime, resultEndTime);
        List<InfluxModelResultPOJO> lastList = new ArrayList<>();
        for (InfluxModelResultVO resultVO : influxModelResult) {
            InfluxModelResultLastSimPOJO adjustPojo = new InfluxModelResultLastSimPOJO();
            // 设置新的调整值
            adjustPojo.setValue(Double.parseDouble(resultVO.getValue().toString()) + adjustValue);
            adjustPojo.setTimestamp(resultVO.getTimestamp());
            adjustPojo.setOutPutId(configEntity.getOutputId());
            lastList.add(adjustPojo);
        }
        // 相同时间直接覆盖旧值
        influxDBService.asyncWriteModelResults(lastList);
        log.info("t+l自动调整。configCode:" + configCode + ",adjustValue:" + adjustValue + ",resultStartTime:" + resultStartTime + ",resultEndTime:" + resultEndTime + "调整长度:" + lastList.size());
        return true;
    }
}