鞍钢鲅鱼圈能源管控系统后端代码
liriming
2 天以前 92dd2a69b3c53a46b5e92fc9d8303df4ba2276b9
ansteel-biz/src/main/java/com/iailab/module/ansteel/job/task/RunCokingTraceModelBMTask.java
@@ -9,17 +9,18 @@
import com.iailab.module.ansteel.coking.entity.CokingTraceSuggestEntity;
import com.iailab.module.ansteel.coking.service.*;
import com.iailab.module.ansteel.common.constant.CommonConstant;
import com.iailab.module.data.api.ind.IndItemApi;
import com.iailab.module.data.api.point.DataPointApi;
import com.iailab.module.model.api.mcs.McsApi;
import com.iailab.module.model.api.mcs.dto.ChartParamDTO;
import com.iailab.module.model.api.mdk.MdkApi;
import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.util.CollectionUtils;
import java.math.BigDecimal;
import java.util.*;
import java.util.stream.Collectors;
@@ -59,10 +60,7 @@
    private McsApi mcsApi;
    @Autowired
    private DataPointApi dataPointApi;
    @Autowired
    private IndItemApi indItemApi;
    private MdkApi mdkApi;
    private final static String process = "备煤工序";
@@ -72,29 +70,22 @@
    private final static String indType = "备煤工序异常溯源";
    private static final HashMap<String, Object> coalColoumMap = new HashMap<String, Object>() {{
        put("coalColoum0", "一级指标-偏差值");
        put("coalColoum1", "二级指标-偏差值");
        put("coalColoum2", "影响因素1-偏差值");
    }};
    private static final HashMap<String, Object> historyPointMap = new HashMap<String, Object>() {{
        put("F0000101008", "备煤耗电");
    }};
    private final static String coalRow = "coalRow";
    private static final String jsonStr = "{\n" + "    " +
            "\"result\": {\n" +
            "\"coalPrepElec\":[1600.8,1613.5],\n" +
            "\"coalPrepElecIndex\":[[0.8,0.73],[723,608],[1782,1782],[752,743],[729,783]],\n" +
            "\"coalPrepElecTotal1\":\"1#粉碎机耗电因粉碎机偏高增加220KW/h,经模型计算,建建议调整单班用煤量,预计可使粉碎机耗电量指标降低170KW/h\",\n" +
            "\"coalPrepElecTotal2\":\"1#粉碎机耗电量数据异常\",\n" +
            "\"coalColoum0\":[[0,450],[0,137],[0,342]],\n" +
            "\"coalColoum1\":[[2,306],[3,134],[1,142]],\n" +
            "\"coalColoum2\":[[4,142],[4,132],[4,349]],\n" +
            "\"coalPrepElecHomePage\":[[50,42],[10,10]],\n" +
            "\"coalHomeIndex\":[[90.4,90.2],[80.3,78],[103,100],[280,270]],\n" +
            "\"coalIndexInfo\":\"2月18日甲班:备煤耗电异常\",\n" +
            "\"coalErr\":\"2月18日粉碎机耗电数据异常(无数据)\"\n" + "    }" + "}";
            "\"coalHomeIndexInfo\":\"2025-04-28 甲班 备煤耗电偏高\"," +
            "\"coalPrepElec\":[1600.8,1613.5]," +
            "\"coalPrepElecTotal1\":\"备煤耗电量偏高,经模型计算,原因和调整建议如下:煤量异常,当前值2000, 建议调整煤量至区间[765.0,1020.0]\"," +
            "\"coalPrepElecTime\":[[0.3,0.3],[1700.31,1900.2],[120.3]]," +
            "\"coalPrepElecIndex\":[133527.2,283517.6,83451.5,233461.2,83564.4]," +
            "\"coalRow0\":[[0.0,1000.3],[1.0,120.2],[7.0,1150.32]]," +
            "\"coalRow1\":[[0.0,1000.5],[2.0,200.56],[7.0,120.2]]," +
            "\"coalRow2\":[[0.0,1000.6],[3.0,261.7],[7.0,170.52]]," +
            "\"coalPrepElecHomePage\":[503000.6,84.04]," +
            "\"coalHomeIndex\":[30.0,4.6,523000.6]" +
            "  }" +
            "}";
    @Override
    public void run(String params) {
@@ -134,6 +125,16 @@
            }
            // 调用模型
     /*       MdkScheduleReqDTO dto = new MdkScheduleReqDTO();
            dto.setScheduleTime(calendar.getTime());
            dto.setScheduleCode(params);
            MdkScheduleRespDTO mdkScheduleRespDTO = mdkApi.doSchedule(dto);
            logger.info(params + "调度方案执行完成," + mdkScheduleRespDTO);
            Map<String, Object> result = mdkScheduleRespDTO.getResult();
            JSONObject jsonObject = new JSONObject(result);
            JSONObject result2 = (JSONObject) JSON.toJSON(jsonObject.get("result"));*/
            JSONObject jsonObject = JSONObject.parseObject(jsonStr);
            JSONObject result = (JSONObject) JSON.toJSON(jsonObject.get("result"));
@@ -144,7 +145,7 @@
            // 保存报告
            String analyDate = DateUtils.format(startDate);
            String analyContent = result.getString("coalIndexInfo");
            String analyContent = result.getString("coalHomeIndexInfo");
            String relId = cokingTraceReportService.save(process, reportName, analyDate, analyClass, clock, analyContent);
            // 保存一级分析指标
@@ -190,27 +191,64 @@
    public void saveTraceDeviation(String relId, String process, String clock, JSONObject result) {
        List<ChartParamDTO> list = mcsApi.getChartParamList(CommonConstant.COAL_INDEX_CHARTCODE);
        Map<String, String> steamIndexMaps = list.stream().collect(Collectors.toMap(ChartParamDTO::getParamCode, e -> e.getParamName()));
        for (int i = 0; i <= 2; i++) {
            String coalColoum = result.get("coalColoum" + i).toString();
            if (StringUtils.isNotBlank(coalColoum)) {
                JSONArray responseArr = JSON.parseArray(coalColoum);
                List<CokingTraceDeviationEntity> entityList = new ArrayList<>();
                for (int j = 0; j < responseArr.size(); j++) {
                    JSONArray element = JSON.parseArray(responseArr.get(j).toString());
                    CokingTraceDeviationEntity deviationEntity = new CokingTraceDeviationEntity();
                    deviationEntity.setRelId(relId);
                    deviationEntity.setProcess(process);
                    deviationEntity.setClock(clock);
                    deviationEntity.setSugObj(SugObj);
                    deviationEntity.setGroupName(coalColoumMap.get("coalColoum" + i).toString());
                    deviationEntity.setIndName(steamIndexMaps.get(element.get(0).toString()));
                    deviationEntity.setIndValue(element.get(1).toString());
                    deviationEntity.setCreateDate(new Date());
                    entityList.add(deviationEntity);
                }
                cokingTraceDeviationService.save(entityList);
        List<String> coalRowKeys = new ArrayList<>();
        result.forEach((key, value) -> {
            if (StringUtils.isNotBlank(key) && key.contains(coalRow)) {
                coalRowKeys.add(key);
            }
        });
        List<CokingTraceDeviationEntity> entityList = new ArrayList<>();
        for (String key : coalRowKeys) {
            JSONArray rowArr = JSON.parseArray(result.get(key).toString());
            if (CollectionUtils.isEmpty(rowArr)) {
                continue;
            }
            CokingTraceDeviationEntity entity = new CokingTraceDeviationEntity();
            entity.setRelId(relId);
            entity.setProcess(process);
            entity.setClock(clock);
            entity.setSugObj(SugObj);
            entity.setInd1Name(steamIndexMaps.get(new BigDecimal(rowArr.getJSONArray(0).get(0).toString()).setScale(0,BigDecimal.ROUND_HALF_UP).toString()));
            entity.setInd1Value(rowArr.getJSONArray(0).get(1).toString());
            entity.setInd1Unit("");
            entity.setInd2Name(steamIndexMaps.get(new BigDecimal(rowArr.getJSONArray(1).get(0).toString()).setScale(0,BigDecimal.ROUND_HALF_UP).toString()));
            entity.setInd2Value(rowArr.getJSONArray(1).get(1).toString());
            entity.setInd2Unit("");
            if (rowArr.size() > 2) {
                entity.setFac1Name(steamIndexMaps.get(new BigDecimal(rowArr.getJSONArray(2).get(0).toString()).setScale(0,BigDecimal.ROUND_HALF_UP).toString()));
                entity.setFac1Value(rowArr.getJSONArray(2).get(1).toString());
                entity.setFac1Unit("");
            }
            if (rowArr.size() > 3) {
                entity.setFac2Name(steamIndexMaps.get(new BigDecimal(rowArr.getJSONArray(3).get(0).toString()).setScale(0,BigDecimal.ROUND_HALF_UP).toString()));
                entity.setFac2Value(rowArr.getJSONArray(3).get(1).toString());
                entity.setFac2Unit("");
            }
            if (rowArr.size() > 4) {
                entity.setFac3Name(steamIndexMaps.get(new BigDecimal(rowArr.getJSONArray(4).get(0).toString()).setScale(0,BigDecimal.ROUND_HALF_UP).toString()));
                entity.setFac3Value(rowArr.getJSONArray(4).get(1).toString());
                entity.setFac3Unit("");
            }
            if (rowArr.size() > 5) {
                entity.setFac4Name(steamIndexMaps.get(new BigDecimal(rowArr.getJSONArray(5).get(0).toString()).setScale(0,BigDecimal.ROUND_HALF_UP).toString()));
                entity.setFac4Value(rowArr.getJSONArray(5).get(1).toString());
                entity.setFac4Unit("");
            }
            if (rowArr.size() > 6) {
                entity.setFac5Name(steamIndexMaps.get(new BigDecimal(rowArr.getJSONArray(6).get(0).toString()).setScale(0,BigDecimal.ROUND_HALF_UP).toString()));
                entity.setFac5Value(rowArr.getJSONArray(6).get(1).toString());
                entity.setFac5Unit("");
            }
            entityList.add(entity);
        }
        cokingTraceDeviationService.save(entityList);
    }
    public void saveAnalyInd(String relId, String process, String analyDate, String analyClass, String analyContent) {
@@ -230,6 +268,8 @@
            analyIndEntity.setSort(i + 1);
            entityList.add(analyIndEntity);
        }
        // 清理旧数据
        cokingAnalyIndService.delete(process, analyDate, analyClass);
        cokingAnalyIndService.save(entityList);
    }
}