package com.iailab.module.model.api;
|
|
import com.alibaba.fastjson.JSON;
|
import com.iailab.module.data.api.point.DataPointApi;
|
import com.iailab.module.data.api.point.dto.ApiPointValueWriteDTO;
|
import com.iailab.module.model.api.mcs.dto.StScheduleModelOutDTO;
|
import com.iailab.module.model.api.mdk.MdkApi;
|
import com.iailab.module.model.api.mdk.dto.*;
|
import com.iailab.module.model.common.enums.IsWriteEnum;
|
import com.iailab.module.model.common.enums.ModelOutResultType;
|
import com.iailab.module.model.common.enums.OutResultType;
|
import com.iailab.module.model.mcs.pre.entity.DmModuleEntity;
|
import com.iailab.module.model.mcs.pre.service.DmModuleService;
|
import com.iailab.module.model.mcs.pre.service.MmPredictItemService;
|
import com.iailab.module.model.mcs.sche.service.StScheduleModelOutService;
|
import com.iailab.module.model.mcs.sche.service.StScheduleRecordService;
|
import com.iailab.module.model.mcs.sche.service.StScheduleSchemeService;
|
import com.iailab.module.model.mdk.predict.PredictModuleHandler;
|
import com.iailab.module.model.mdk.predict.PredictResultHandler;
|
import com.iailab.module.model.mdk.schedule.ScheduleModelHandler;
|
import com.iailab.module.model.mdk.vo.DataValueVO;
|
import com.iailab.module.model.mdk.vo.ItemVO;
|
import com.iailab.module.model.mdk.vo.PredictResultVO;
|
import com.iailab.module.model.mdk.vo.ScheduleResultVO;
|
import lombok.extern.slf4j.Slf4j;
|
import org.springframework.beans.factory.annotation.Autowired;
|
import org.springframework.util.CollectionUtils;
|
import org.springframework.validation.annotation.Validated;
|
import org.springframework.web.bind.annotation.RestController;
|
|
import java.util.*;
|
import java.util.stream.Collectors;
|
|
import static com.iailab.module.model.common.enums.ModelOutResultType.D;
|
|
/**
|
* @author PanZhibao
|
* @Description
|
* @createTime 2024年08月26日
|
*/
|
@Slf4j
|
@RestController
|
@Validated
|
public class MdkApiImpl implements MdkApi {
|
|
@Autowired
|
private DmModuleService dmModuleService;
|
|
@Autowired
|
private MmPredictItemService mmPredictItemService;
|
|
@Autowired
|
private PredictModuleHandler predictModuleHandler;
|
|
@Autowired
|
private PredictResultHandler predictResultHandler;
|
|
@Autowired
|
private ScheduleModelHandler scheduleModelHandler;
|
|
@Autowired
|
private StScheduleRecordService stScheduleRecordService;
|
|
@Autowired
|
private StScheduleSchemeService stScheduleSchemeService;
|
|
@Autowired
|
private StScheduleModelOutService stScheduleModelOutService;
|
|
@Autowired
|
private DataPointApi dataPointApi;
|
|
/**
|
* 按模块预测
|
*
|
* @param reqDTO
|
* @return
|
*/
|
@Override
|
public MdkPredictModuleRespDTO predictModule(MdkPredictReqDTO reqDTO) {
|
MdkPredictModuleRespDTO resp = new MdkPredictModuleRespDTO();
|
resp.setPredictTime(reqDTO.getPredictTime());
|
resp.setModuleType(reqDTO.getModuleType());
|
|
Map<String, MdkPredictItemRespDTO> predictItemRespMap = new HashMap<>();
|
try {
|
if (reqDTO.getPredictTime() == null) {
|
throw new Exception("PredictTime不能为空");
|
}
|
if (reqDTO.getModuleType() == null) {
|
throw new Exception("ModuleType不能为空");
|
}
|
Calendar calendar = Calendar.getInstance();
|
calendar.setTime(reqDTO.getPredictTime());
|
calendar.set(Calendar.MILLISECOND, 0);
|
calendar.set(Calendar.SECOND, 0);
|
reqDTO.setPredictTime(calendar.getTime());
|
log.info("预测参数:" + JSON.toJSONString(reqDTO));
|
MdkPredictModuleRespDTO result = new MdkPredictModuleRespDTO();
|
result.setPredictTime(reqDTO.getPredictTime());
|
result.setModuleType(reqDTO.getModuleType());
|
List<DmModuleEntity> moduleList = dmModuleService.getModuleByModuleType(reqDTO.getModuleType());
|
log.info("预测计算开始: " + System.currentTimeMillis());
|
for (DmModuleEntity module : moduleList) {
|
int intervalTime = 0;
|
if (module.getPredicttime() != null) {
|
intervalTime = (int) (reqDTO.getPredictTime().getTime() - module.getPredicttime().getTime()) / (1000 * 60);
|
}
|
List<ItemVO> predictItemList = mmPredictItemService.getByModuleId(module.getId());
|
Map<String, PredictResultVO> predictResultMap = new HashMap<>(predictItemList.size());
|
// 分组,先运行normal预测项,再将结果传递给merge预测项
|
List<ItemVO> normalItems = predictItemList.stream().filter(e -> e.getItemType().equals("NormalItem")).collect(Collectors.toList());
|
if (!CollectionUtils.isEmpty(normalItems)) {
|
predictModuleHandler.predict(normalItems, reqDTO.getPredictTime(), intervalTime, predictResultMap);
|
List<ItemVO> mergeItems = predictItemList.stream().filter(e -> e.getItemType().equals("MergeItem")).collect(Collectors.toList());
|
if (!CollectionUtils.isEmpty(mergeItems)) {
|
predictModuleHandler.predict(mergeItems, reqDTO.getPredictTime(), intervalTime, predictResultMap);
|
}
|
}
|
// 更新Module时间
|
dmModuleService.updatePredictTime(module.getId(), reqDTO.getPredictTime());
|
if (reqDTO.getIsResult() == null || !reqDTO.getIsResult()) {
|
return resp;
|
}
|
for (Map.Entry<String, PredictResultVO> entry : predictResultMap.entrySet()) {
|
MdkPredictItemRespDTO itemResp = new MdkPredictItemRespDTO();
|
itemResp.setItemId(entry.getKey());
|
itemResp.setPredictTime(reqDTO.getPredictTime());
|
Map<String, List<MdkPredictDataDTO>> itemPredictData = new HashMap<>();
|
|
Map<String, List<DataValueVO>> predictLists = predictResultHandler.convertToPredictData2(entry.getValue());
|
for (Map.Entry<String, List<DataValueVO>> dataListEntry : predictLists.entrySet()) {
|
List<MdkPredictDataDTO> predictData = dataListEntry.getValue().stream().map(t -> {
|
MdkPredictDataDTO dto1 = new MdkPredictDataDTO();
|
dto1.setDataTime(t.getDataTime());
|
dto1.setDataValue(t.getDataValue());
|
return dto1;
|
}).collect(Collectors.toList());
|
itemPredictData.put(dataListEntry.getKey(), predictData);
|
}
|
itemResp.setPredictData(itemPredictData);
|
predictItemRespMap.put(entry.getKey(), itemResp);
|
}
|
}
|
log.info("预测计算结束: " + System.currentTimeMillis());
|
} catch (Exception ex) {
|
ex.printStackTrace();
|
return resp;
|
}
|
resp.setPredictItemRespMap(predictItemRespMap);
|
return resp;
|
}
|
|
/**
|
* 单个预测
|
*
|
* @param reqDTO
|
* @return
|
*/
|
@Override
|
public MdkPredictItemRespDTO predictItem(MdkPredictReqDTO reqDTO) {
|
MdkPredictItemRespDTO resp = new MdkPredictItemRespDTO();
|
try {
|
|
ItemVO itemByItemNo = mmPredictItemService.getItemByItemNo(reqDTO.getItemNo());
|
List<ItemVO> predictItemList = new ArrayList<>();
|
predictItemList.add(itemByItemNo);
|
Map<String, PredictResultVO> predictResultMap = new HashMap<>(predictItemList.size());
|
predictModuleHandler.predict(predictItemList, reqDTO.getPredictTime(), 0, predictResultMap);
|
|
Map<String, List<MdkPredictDataDTO>> itemPredictData = new HashMap<>();
|
|
Map<String, List<DataValueVO>> predictLists = predictResultHandler.convertToPredictData2(predictResultMap.get(reqDTO.getItemNo()));
|
for (Map.Entry<String, List<DataValueVO>> dataListEntry : predictLists.entrySet()) {
|
List<MdkPredictDataDTO> predictData = dataListEntry.getValue().stream().map(t -> {
|
MdkPredictDataDTO dto1 = new MdkPredictDataDTO();
|
dto1.setDataTime(t.getDataTime());
|
dto1.setDataValue(t.getDataValue());
|
return dto1;
|
}).collect(Collectors.toList());
|
itemPredictData.put(dataListEntry.getKey(), predictData);
|
}
|
resp.setItemId(reqDTO.getItemNo());
|
resp.setPredictTime(reqDTO.getPredictTime());
|
resp.setPredictData(itemPredictData);
|
} catch (Exception e) {
|
throw new RuntimeException(e);
|
}
|
|
return resp;
|
}
|
|
/**
|
* 预测调整
|
*
|
* @param reqDTO
|
* @return
|
*/
|
@Override
|
public Boolean predictAutoAdjust(MdkPredictReqDTO reqDTO) {
|
|
|
return true;
|
}
|
|
/**
|
* 执行调度模型
|
*
|
* @param reqDTO
|
* @return
|
*/
|
@Override
|
public MdkScheduleRespDTO doSchedule(MdkScheduleReqDTO reqDTO) {
|
MdkScheduleRespDTO resp = new MdkScheduleRespDTO();
|
resp.setScheduleCode(reqDTO.getScheduleCode());
|
resp.setScheduleTime(reqDTO.getScheduleTime());
|
try {
|
log.info("调度计算开始: " + System.currentTimeMillis());
|
ScheduleResultVO scheduleResult = scheduleModelHandler.doSchedule(reqDTO.getScheduleCode(), reqDTO.getScheduleTime(),
|
reqDTO.getDynamicDataLength(), reqDTO.getDynamicSettings());
|
resp.setStatusCode(scheduleResult.getResultCode());
|
resp.setResult(scheduleResult.getResult());
|
stScheduleRecordService.create(scheduleResult);
|
stScheduleSchemeService.updateTime(scheduleResult.getSchemeId(), scheduleResult.getScheduleTime(), scheduleResult.getResultCode());
|
log.info("预测计算结束: " + System.currentTimeMillis());
|
} catch (Exception ex) {
|
log.info("调度计算异常: " + System.currentTimeMillis());
|
ex.printStackTrace();
|
return resp;
|
}
|
return resp;
|
}
|
|
@Override
|
public Boolean scheduleModelOut(MdkScheduleRespDTO dto) {
|
String modelId = stScheduleSchemeService.getByCode(dto.getScheduleCode()).getModelId();
|
Map<String, Object> result = dto.getResult();
|
List<StScheduleModelOutDTO> list = stScheduleModelOutService.list(modelId);
|
try {
|
for (StScheduleModelOutDTO stScheduleModelOutDTO : list) {
|
double value = 0;
|
//判断点位是否下发
|
if (stScheduleModelOutDTO.getIsWrite().equals(IsWriteEnum.NOTWRITE.value())) {
|
continue;
|
}
|
//返回结果是否存在
|
if (result.get(stScheduleModelOutDTO.getResultKey()) == null) {
|
log.error(result.get(stScheduleModelOutDTO.getResultKey()) + "resultKey匹配失败");
|
continue;
|
}
|
Object resultValue = result.get(stScheduleModelOutDTO.getResultKey());
|
//判断解析方式
|
ModelOutResultType modelOutResultType = ModelOutResultType.getEumByCode(stScheduleModelOutDTO.getResultType());
|
switch (modelOutResultType) {
|
case D:
|
value = (Double) resultValue;
|
break;
|
case D1:
|
ArrayList<Double> doubleList = (ArrayList<Double>) resultValue;
|
double[] array1 = new double[doubleList.size()];
|
for (int i = 0; i < doubleList.size(); i++) {
|
array1[i] = doubleList.get(i);
|
}
|
if (stScheduleModelOutDTO.getResultPort() < array1.length) {
|
value = array1[stScheduleModelOutDTO.getResultPort()];
|
} else {
|
log.error(result.get(stScheduleModelOutDTO.getResultKey()) + "下角标超限");
|
}
|
break;
|
case D2:
|
ArrayList<ArrayList<Double>> doubleListList = (ArrayList<ArrayList<Double>>) resultValue;
|
double[][] array2 = new double[doubleListList.size()][];
|
for (int i = 0; i < doubleListList.size(); i++) {
|
ArrayList<Double> doubleList2 = doubleListList.get(i);
|
array2[i] = new double[doubleList2.size()];
|
for (int j = 0; j < doubleList2.size(); j++) {
|
array2[i][j] = doubleList2.get(j);
|
}
|
}
|
if (stScheduleModelOutDTO.getResultPort() < array2.length && stScheduleModelOutDTO.getResultIndex() < array2[stScheduleModelOutDTO.getResultPort()].length) {
|
value = array2[stScheduleModelOutDTO.getResultPort()][stScheduleModelOutDTO.getResultIndex()];
|
} else {
|
log.error(result.get(stScheduleModelOutDTO.getResultKey()) + "下标超限");
|
}
|
break;
|
}
|
//下发到point点位
|
ApiPointValueWriteDTO ApiPointValueWriteDTO = new ApiPointValueWriteDTO();
|
ApiPointValueWriteDTO.setPointNo(stScheduleModelOutDTO.getPointNo());
|
ApiPointValueWriteDTO.setValue(value);
|
if (!dataPointApi.writePointRealValue(ApiPointValueWriteDTO)) {
|
log.error(result.get(stScheduleModelOutDTO.getResultKey()) + "下发数据异常");
|
}
|
}
|
} catch (Exception ex) {
|
log.error("下发数据异常");
|
ex.printStackTrace();
|
}
|
return true;
|
}
|
}
|