工业互联网平台2.0版本后端代码
houzhongjian
2025-05-29 41499fd3c28216c1526a72b10fa98eb8ffee78cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
package com.iailab.module.ai.service.knowledge;
 
import cn.hutool.core.collection.CollUtil;
import cn.hutool.core.collection.ListUtil;
import cn.hutool.core.util.ObjUtil;
import cn.hutool.core.util.StrUtil;
import com.iailab.framework.common.enums.CommonStatusEnum;
import com.iailab.framework.common.pojo.PageResult;
import com.iailab.framework.common.util.object.BeanUtils;
import com.iailab.module.ai.controller.admin.knowledge.vo.segment.AiKnowledgeSegmentPageReqVO;
import com.iailab.module.ai.controller.admin.knowledge.vo.segment.AiKnowledgeSegmentProcessRespVO;
import com.iailab.module.ai.controller.admin.knowledge.vo.segment.AiKnowledgeSegmentSaveReqVO;
import com.iailab.module.ai.controller.admin.knowledge.vo.segment.AiKnowledgeSegmentUpdateStatusReqVO;
import com.iailab.module.ai.dal.dataobject.knowledge.AiKnowledgeDO;
import com.iailab.module.ai.dal.dataobject.knowledge.AiKnowledgeDocumentDO;
import com.iailab.module.ai.dal.dataobject.knowledge.AiKnowledgeSegmentDO;
import com.iailab.module.ai.dal.mysql.knowledge.AiKnowledgeSegmentMapper;
import com.iailab.module.ai.service.knowledge.bo.AiKnowledgeSegmentSearchReqBO;
import com.iailab.module.ai.service.knowledge.bo.AiKnowledgeSegmentSearchRespBO;
import com.iailab.module.ai.service.model.AiModelService;
import jakarta.annotation.Resource;
import lombok.extern.slf4j.Slf4j;
import org.springframework.ai.document.Document;
import org.springframework.ai.tokenizer.TokenCountEstimator;
import org.springframework.ai.transformer.splitter.TextSplitter;
import org.springframework.ai.transformer.splitter.TokenTextSplitter;
import org.springframework.ai.vectorstore.SearchRequest;
import org.springframework.ai.vectorstore.VectorStore;
import org.springframework.ai.vectorstore.filter.FilterExpressionBuilder;
import org.springframework.context.annotation.Lazy;
import org.springframework.stereotype.Service;
 
import java.util.*;
 
import static com.iailab.framework.common.exception.util.ServiceExceptionUtil.exception;
import static com.iailab.framework.common.util.collection.CollectionUtils.convertList;
import static com.iailab.module.ai.enums.ErrorCodeConstants.KNOWLEDGE_SEGMENT_CONTENT_TOO_LONG;
import static com.iailab.module.ai.enums.ErrorCodeConstants.KNOWLEDGE_SEGMENT_NOT_EXISTS;
 
/**
 * AI 知识库分片 Service 实现类
 *
 * @author xiaoxin
 */
@Service
@Slf4j
public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService {
 
    private static final String VECTOR_STORE_METADATA_KNOWLEDGE_ID = "knowledgeId";
    private static final String VECTOR_STORE_METADATA_DOCUMENT_ID = "documentId";
    private static final String VECTOR_STORE_METADATA_SEGMENT_ID = "segmentId";
 
    private static final Map<String, Class<?>> VECTOR_STORE_METADATA_TYPES = Map.of(
            VECTOR_STORE_METADATA_KNOWLEDGE_ID, String.class,
            VECTOR_STORE_METADATA_DOCUMENT_ID, String.class,
            VECTOR_STORE_METADATA_SEGMENT_ID, String.class);
 
    @Resource
    private AiKnowledgeSegmentMapper segmentMapper;
 
    @Resource
    private AiKnowledgeService knowledgeService;
    @Resource
    @Lazy // 延迟加载,避免循环依赖
    private AiKnowledgeDocumentService knowledgeDocumentService;
    @Resource
    private AiModelService modelService;
 
    @Resource
    private TokenCountEstimator tokenCountEstimator;
 
    @Override
    public PageResult<AiKnowledgeSegmentDO> getKnowledgeSegmentPage(AiKnowledgeSegmentPageReqVO pageReqVO) {
        return segmentMapper.selectPage(pageReqVO);
    }
 
    @Override
    public void createKnowledgeSegmentBySplitContent(Long documentId, String content) {
        // 1. 校验
        AiKnowledgeDocumentDO documentDO = knowledgeDocumentService.validateKnowledgeDocumentExists(documentId);
        AiKnowledgeDO knowledgeDO = knowledgeService.validateKnowledgeExists(documentDO.getKnowledgeId());
        VectorStore vectorStore = getVectorStoreById(knowledgeDO);
 
        // 2. 文档切片
        List<Document> documentSegments = splitContentByToken(content, documentDO.getSegmentMaxTokens());
 
        // 3.1 存储切片
        List<AiKnowledgeSegmentDO> segmentDOs = convertList(documentSegments, segment -> {
            if (StrUtil.isEmpty(segment.getText())) {
                return null;
            }
            return new AiKnowledgeSegmentDO().setKnowledgeId(documentDO.getKnowledgeId()).setDocumentId(documentId)
                    .setContent(segment.getText()).setContentLength(segment.getText().length())
                    .setVectorId(AiKnowledgeSegmentDO.VECTOR_ID_EMPTY)
                    .setTokens(tokenCountEstimator.estimate(segment.getText()))
                    .setStatus(CommonStatusEnum.ENABLE.getStatus());
        });
        segmentMapper.insertBatch(segmentDOs);
        // 3.2 切片向量化
        for (int i = 0; i < documentSegments.size(); i++) {
            Document segment = documentSegments.get(i);
            AiKnowledgeSegmentDO segmentDO = segmentDOs.get(i);
            writeVectorStore(vectorStore, segmentDO, segment);
        }
    }
 
    @Override
    public void updateKnowledgeSegment(AiKnowledgeSegmentSaveReqVO reqVO) {
        // 1. 校验
        AiKnowledgeSegmentDO oldSegment = validateKnowledgeSegmentExists(reqVO.getId());
 
        // 2. 删除向量
        VectorStore vectorStore = getVectorStoreById(oldSegment.getKnowledgeId());
        deleteVectorStore(vectorStore, oldSegment);
 
        // 3.1 更新切片
        AiKnowledgeSegmentDO newSegment = BeanUtils.toBean(reqVO, AiKnowledgeSegmentDO.class);
        segmentMapper.updateById(newSegment);
        // 3.2 重新向量化,必须开启状态
        if (CommonStatusEnum.isEnable(oldSegment.getStatus())) {
            newSegment.setKnowledgeId(oldSegment.getKnowledgeId()).setDocumentId(oldSegment.getDocumentId());
            writeVectorStore(vectorStore, newSegment, new Document(newSegment.getContent()));
        }
    }
 
    @Override
    public void deleteKnowledgeSegmentByDocumentId(Long documentId) {
        // 1. 查询需要删除的段落
        List<AiKnowledgeSegmentDO> segments = segmentMapper.selectListByDocumentId(documentId);
        if (CollUtil.isEmpty(segments)) {
            return;
        }
 
        // 2. 批量删除段落记录
        segmentMapper.deleteByIds(convertList(segments, AiKnowledgeSegmentDO::getId));
 
        // 3. 删除向量存储中的段落
        VectorStore vectorStore = getVectorStoreById(segments.get(0).getKnowledgeId());
        vectorStore.delete(convertList(segments, AiKnowledgeSegmentDO::getVectorId));
    }
 
    @Override
    public void updateKnowledgeSegmentStatus(AiKnowledgeSegmentUpdateStatusReqVO reqVO) {
        // 1. 校验
        AiKnowledgeSegmentDO segment = validateKnowledgeSegmentExists(reqVO.getId());
 
        // 2. 获取知识库向量实例
        VectorStore vectorStore = getVectorStoreById(segment.getKnowledgeId());
 
        // 3. 更新状态
        segmentMapper.updateById(new AiKnowledgeSegmentDO().setId(reqVO.getId()).setStatus(reqVO.getStatus()));
 
        // 4. 更新向量
        if (CommonStatusEnum.isEnable(reqVO.getStatus())) {
            writeVectorStore(vectorStore, segment, new Document(segment.getContent()));
        } else {
            deleteVectorStore(vectorStore, segment);
        }
    }
 
    @Override
    public void reindexKnowledgeSegmentByKnowledgeId(Long knowledgeId) {
        // 1.1 校验知识库存在
        AiKnowledgeDO knowledge = knowledgeService.validateKnowledgeExists(knowledgeId);
        // 1.2 获取知识库向量实例
        VectorStore vectorStore = getVectorStoreById(knowledge);
 
        // 2.1 查询知识库下的所有启用状态的段落
        List<AiKnowledgeSegmentDO> segments = segmentMapper.selectListByKnowledgeIdAndStatus(
                knowledgeId, CommonStatusEnum.ENABLE.getStatus());
        if (CollUtil.isEmpty(segments)) {
            return;
        }
        // 2.2 遍历所有段落,重新索引
        for (AiKnowledgeSegmentDO segment : segments) {
            // 删除旧的向量
            deleteVectorStore(vectorStore, segment);
            // 重新创建向量
            writeVectorStore(vectorStore, segment, new Document(segment.getContent()));
        }
        log.info("[reindexKnowledgeSegmentByKnowledgeId][知识库({}) 重新索引完成,共处理 {} 个段落]",
                knowledgeId, segments.size());
    }
 
    private void writeVectorStore(VectorStore vectorStore, AiKnowledgeSegmentDO segmentDO, Document segment) {
        // 1. 向量存储
        // 为什么要 toString 呢?因为部分 VectorStore 实现,不支持 Long 类型,例如说 QdrantVectorStore
        segment.getMetadata().put(VECTOR_STORE_METADATA_KNOWLEDGE_ID, segmentDO.getKnowledgeId().toString());
        segment.getMetadata().put(VECTOR_STORE_METADATA_DOCUMENT_ID, segmentDO.getDocumentId().toString());
        segment.getMetadata().put(VECTOR_STORE_METADATA_SEGMENT_ID, segmentDO.getId().toString());
        vectorStore.add(List.of(segment));
 
        // 2. 更新向量 ID
        segmentMapper.updateById(new AiKnowledgeSegmentDO().setId(segmentDO.getId()).setVectorId(segment.getId()));
    }
 
    private void deleteVectorStore(VectorStore vectorStore, AiKnowledgeSegmentDO segmentDO) {
        // 1. 更新向量 ID
        if (StrUtil.isEmpty(segmentDO.getVectorId())) {
            return;
        }
        segmentMapper.updateById(new AiKnowledgeSegmentDO().setId(segmentDO.getId())
                .setVectorId(AiKnowledgeSegmentDO.VECTOR_ID_EMPTY));
 
        // 2. 删除向量
        vectorStore.delete(List.of(segmentDO.getVectorId()));
    }
 
    @Override
    public List<AiKnowledgeSegmentSearchRespBO> searchKnowledgeSegment(AiKnowledgeSegmentSearchReqBO reqBO) {
        // 1. 校验
        AiKnowledgeDO knowledge = knowledgeService.validateKnowledgeExists(reqBO.getKnowledgeId());
 
        // 2.1 向量检索
        VectorStore vectorStore = getVectorStoreById(knowledge);
        List<Document> documents = vectorStore.similaritySearch(SearchRequest.builder()
                .query(reqBO.getContent())
                .topK(ObjUtil.defaultIfNull(reqBO.getTopK(), knowledge.getTopK()))
                .similarityThreshold(
                        ObjUtil.defaultIfNull(reqBO.getSimilarityThreshold(), knowledge.getSimilarityThreshold()))
                .filterExpression(new FilterExpressionBuilder()
                        .eq(VECTOR_STORE_METADATA_KNOWLEDGE_ID, reqBO.getKnowledgeId().toString())
                        .build())
                .build());
        if (CollUtil.isEmpty(documents)) {
            return ListUtil.empty();
        }
        // 2.2 段落召回
        List<AiKnowledgeSegmentDO> segments = segmentMapper
                .selectListByVectorIds(convertList(documents, Document::getId));
        if (CollUtil.isEmpty(segments)) {
            return ListUtil.empty();
        }
 
        // 3. 增加召回次数
        segmentMapper.updateRetrievalCountIncrByIds(convertList(segments, AiKnowledgeSegmentDO::getId));
 
        // 4. 构建结果
        List<AiKnowledgeSegmentSearchRespBO> result = convertList(segments, segment -> {
            Document document = CollUtil.findOne(documents, // 找到对应的文档
                    doc -> Objects.equals(doc.getId(), segment.getVectorId()));
            if (document == null) {
                return null;
            }
            return BeanUtils.toBean(segment, AiKnowledgeSegmentSearchRespBO.class)
                    .setScore(document.getScore());
        });
        result.sort((o1, o2) -> Double.compare(o2.getScore(), o1.getScore())); // 按照分数降序排序
        return result;
    }
 
    @Override
    public List<AiKnowledgeSegmentDO> splitContent(String url, Integer segmentMaxTokens) {
        // 1. 读取 URL 内容
        String content = knowledgeDocumentService.readUrl(url);
 
        // 2. 文档切片
        List<Document> documentSegments = splitContentByToken(content, segmentMaxTokens);
 
        // 3. 转换为段落对象
        return convertList(documentSegments, segment -> {
            if (StrUtil.isEmpty(segment.getText())) {
                return null;
            }
            return new AiKnowledgeSegmentDO()
                    .setContent(segment.getText())
                    .setContentLength(segment.getText().length())
                    .setTokens(tokenCountEstimator.estimate(segment.getText()));
        });
    }
 
    /**
     * 校验段落是否存在
     *
     * @param id 文档编号
     * @return 段落信息
     */
    private AiKnowledgeSegmentDO validateKnowledgeSegmentExists(Long id) {
        AiKnowledgeSegmentDO knowledgeSegment = segmentMapper.selectById(id);
        if (knowledgeSegment == null) {
            throw exception(KNOWLEDGE_SEGMENT_NOT_EXISTS);
        }
        return knowledgeSegment;
    }
 
    private VectorStore getVectorStoreById(AiKnowledgeDO knowledge) {
        return modelService.getOrCreateVectorStore(knowledge.getEmbeddingModelId(), VECTOR_STORE_METADATA_TYPES);
    }
 
    private VectorStore getVectorStoreById(Long knowledgeId) {
        AiKnowledgeDO knowledge = knowledgeService.validateKnowledgeExists(knowledgeId);
        return getVectorStoreById(knowledge);
    }
 
    private static List<Document> splitContentByToken(String content, Integer segmentMaxTokens) {
        TextSplitter textSplitter = buildTokenTextSplitter(segmentMaxTokens);
        return textSplitter.apply(Collections.singletonList(new Document(content)));
    }
 
    private static TextSplitter buildTokenTextSplitter(Integer segmentMaxTokens) {
        return TokenTextSplitter.builder()
                .withChunkSize(segmentMaxTokens)
                .withMinChunkSizeChars(Integer.MAX_VALUE) // 忽略字符的截断
                .withMinChunkLengthToEmbed(1) // 允许的最小有效分段长度
                .withMaxNumChunks(Integer.MAX_VALUE)
                .withKeepSeparator(true) // 保留分隔符
                .build();
    }
 
    @Override
    public List<AiKnowledgeSegmentProcessRespVO> getKnowledgeSegmentProcessList(List<Long> documentIds) {
        if (CollUtil.isEmpty(documentIds)) {
            return Collections.emptyList();
        }
        return segmentMapper.selectProcessList(documentIds);
    }
 
    @Override
    public Long createKnowledgeSegment(AiKnowledgeSegmentSaveReqVO createReqVO) {
        // 1.1 校验文档是否存在
        AiKnowledgeDocumentDO document = knowledgeDocumentService
                .validateKnowledgeDocumentExists(createReqVO.getDocumentId());
        // 1.2 获取知识库信息
        AiKnowledgeDO knowledge = knowledgeService.validateKnowledgeExists(document.getKnowledgeId());
        // 1.3 校验 token 熟练
        Integer tokens = tokenCountEstimator.estimate(createReqVO.getContent());
        if (tokens > document.getSegmentMaxTokens()) {
            throw exception(KNOWLEDGE_SEGMENT_CONTENT_TOO_LONG, tokens, document.getSegmentMaxTokens());
        }
 
        // 2. 保存段落
        AiKnowledgeSegmentDO segment = BeanUtils.toBean(createReqVO, AiKnowledgeSegmentDO.class)
                .setKnowledgeId(knowledge.getId()).setDocumentId(document.getId())
                .setContentLength(createReqVO.getContent().length()).setTokens(tokens)
                .setVectorId(AiKnowledgeSegmentDO.VECTOR_ID_EMPTY)
                .setRetrievalCount(0).setStatus(CommonStatusEnum.ENABLE.getStatus());
        segmentMapper.insert(segment);
 
        // 3. 向量化
        writeVectorStore(getVectorStoreById(knowledge), segment, new Document(segment.getContent()));
        return segment.getId();
    }
 
    @Override
    public AiKnowledgeSegmentDO getKnowledgeSegment(Long id) {
        return segmentMapper.selectById(id);
    }
 
    @Override
    public List<AiKnowledgeSegmentDO> getKnowledgeSegmentList(Collection<Long> ids) {
        if (CollUtil.isEmpty(ids)) {
            return Collections.emptyList();
        }
        return segmentMapper.selectBatchIds(ids);
    }
 
}