package ${pkgName}.impl;
|
|
import ${pkgName}.${pyName};
|
import utils.AlgsUtils;
|
|
import java.util.HashMap;
|
|
public class ${pyName}Impl extends ${pyName} {
|
private AlgsUtils utils = new AlgsUtils();
|
//train的输出map
|
private HashMap<String, Object> train_result;
|
//predict输入模型
|
private HashMap<String, Object> model;
|
//predict输出模型
|
private HashMap<String, Object> predict_result;
|
|
public native HashMap<String, Object> ${pyName}Train(double[][] dataone, HashMap<String, Object> settings);
|
|
@Override
|
public HashMap<String, Object> train(double[][] dataone, HashMap<String, Object> settings) {
|
double startTime = System.currentTimeMillis(); //获取开始时间
|
|
if (dataone == null || dataone.length == 0 || dataone[0].length == 0) {
|
train_result = new HashMap<String, Object>();
|
train_result.put("status_code", -4);
|
return train_result;
|
}
|
|
train_result = ${pyName}Train(dataone, settings);
|
return train_result;
|
}
|
|
public native HashMap<String, Object> ${pyName}Predict(#foreach ($column in [1..$dataLength])double data${column}[][], #{end}HashMap<String, Object> models, HashMap<String, Object> settings);
|
|
@Override
|
public HashMap<String, Object> predict(#foreach ($column in [1..$dataLength])double data${column}[][], #{end}HashMap<String, Object> models, HashMap<String, Object> settings) {
|
model = utils.createPredictHashmapplus(models);
|
if (#{foreach} ($column in [1..$dataLength])#{if}($column==1)data${column} == null || data${column}.length == 0 || data${column}[0].length == 0#{else} || data${column} == null || data${column}.length == 0 || data${column}[0].length == 0#{end}#{end}) {
|
predict_result = new HashMap<String, Object>();
|
predict_result.put("status_code", -4);
|
return predict_result;
|
}
|
predict_result = ${pyName}Predict(#foreach ($column in [1..$dataLength])data${column}, #{end}model, settings);
|
|
// predict_result.put("result_code",utils.reverseResultCode(predict_result));
|
return predict_result;
|
}
|
}
|