工业互联网平台2.0版本后端代码
潘志宝
2024-09-12 27e7299964b861c079dbb2826edab00dfd6dc27d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
package ${pkgName}.impl;
 
import ${pkgName}.${pyName};
import utils.AlgsUtils;
 
import java.util.HashMap;
 
public class ${pyName}Impl extends ${pyName} {
    private AlgsUtils utils = new AlgsUtils();
    //train的输出map
    private HashMap<String, Object> train_result;
    //predict输入模型
    private HashMap<String, Object> model;
    //predict输出模型
    private HashMap<String, Object> predict_result;
 
    public native HashMap<String, Object> ${pyName}Train(double[][] dataone, HashMap<String, Object> settings);
 
    @Override
    public HashMap<String, Object> train(double[][] dataone, HashMap<String, Object> settings) {
        double startTime = System.currentTimeMillis();    //获取开始时间
 
        if (dataone == null || dataone.length == 0 || dataone[0].length == 0) {
            train_result = new HashMap<String, Object>();
            train_result.put("status_code", -4);
            return train_result;
        }
 
        train_result = ${pyName}Train(dataone, settings);
        return train_result;
    }
 
    public native HashMap<String, Object> ${pyName}Predict(#foreach ($column in [1..$dataLength])double data${column}[][], #{end}HashMap<String, Object> models, HashMap<String, Object> settings);
 
    @Override
    public HashMap<String, Object> predict(#foreach ($column in [1..$dataLength])double data${column}[][], #{end}HashMap<String, Object> models, HashMap<String, Object> settings) {
        model = utils.createPredictHashmapplus(models);
        if (#{foreach} ($column in [1..$dataLength])#{if}($column==1)data${column} == null || data${column}.length == 0 || data${column}[0].length == 0#{else} || data${column} == null || data${column}.length == 0 || data${column}[0].length == 0#{end}#{end}) {
            predict_result = new HashMap<String, Object>();
            predict_result.put("status_code", -4);
            return predict_result;
        }
        predict_result = ${pyName}Predict(#foreach ($column in [1..$dataLength])data${column}, #{end}model, settings);
 
        // predict_result.put("result_code",utils.reverseResultCode(predict_result));
        return predict_result;
    }
}